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Abstract. We study linear actions of finite groups in small di-
mensions, up to equivariant birationality.

1. Introduction

The classification of actions of finite groups on rational surfaces, up
to equivariant birationality, has a rich past and an active present. It
goes back at least to the classical work of Bertini, Castelnuovo, Kantor,
Segre, with the focus on involutions and their fixed loci, to the work
of Manin, Iskovskikh, and Sarkisov, with an emphasis on the group
action on the Picard group, classication of elementary birational trans-
formations, and equivariant birational rigidity. The fundamental work
of Dolgachev–Iskovskikh [11] summarizes and completes this vast pro-
gram, to a certain extent: it gives a list of finite groups that can act on
rational surfaces, and presents an algorithm that allows to distinguish
different birational actions of a group, in many cases.

More precisely, the equivariant Minimal Model Program (MMP)
shows that an action of a finite group G on a rational surface can
be realized as a regular action either on a Del Pezzo surface or conic
bundle over P1. One can assume that the surface is minimal, i.e., no
equivariant blow downs are possible. Actions on minimal Del Pezzo
surfaces of low degree are rigid, and visible via induced actions on the
primitive Picard lattice, i.e., as subgroups of the respective Weyl group.

The most significant “What is left?” [11, Section 9] was the classi-
fication, up to birationality, of actions on Del Pezzo surfaces of high
degree, e.g., linear and projectively linear actions on the projective
plane.

Recall that linear, respectively, projectively linear actions of finite
groups G arise via projectivizations P(V ) of an (n + 1)-dimensional
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representation V of G, respectively, of a central extension of G. In
classical terminology, these are called:

• intransitive: if the representation V is reducible,
• transitive but imprimitive: if the action is not intransitive, but
there is a nontrivial normal subgroup of G acting intransitively;

• primitive: neither of the above.

The case of primitive actions was essentially settled, via equivariant
MMP, in [28]. On the other extreme, the birational classification of
linear actions of abelian groups has been settled, in all dimensions, in
[27, Theorem 7.1]. In general, the classification of regular actions on
P2, up to birationality, is still an open problem.

The case of threefolds is much more involved. As in dimension 2,
the birational classification of linear actions on P3 is an open problem.
Significant progress has been achieved in analyzing primitive actions
[10], [6], or involutions in the Cremona group Cr3 (see [25]).

New equivariant birational invariants were defined in [17] and [21].
The definitions assume that the ground field is of characteristic zero and
contains roots of unity of order dividing the order of G. The invariants
are computed on an appropriate birational model X (standard form)
and take values in the Burnside group

Burnn(G),

which is defined as a quotient of a symbols group by explicit relations.
The symbols encode information about loci with nontrivial abelian sta-
bilizers, the weights of the induced action in the normal bundle to these
loci, as well as the induced action on the corresponding function fields,
see [12] for definitions and examples. The paper [22] applied this for-
malism to the study of actions on P2 and produced new examples of
non-birational intransitive actions.

In this paper, we work over an algebraically closed field k of charac-
teristic zero. We apply the formalism of Burnside groups to the study
of linear actions in dimensions ≤ 3. We make extensive use of the algo-
rithm developed in [22], which allows to recursively compute the class
in Burnn(G) of a (projectively) linear action of a finite group G on Pn.
We have implemented this algorithm in magma and compiled tables of
classes of such actions on P2 and P3, see [32]. Among our results are:

• In dimension 2, the Burnside formalism does not allow to dis-
tinguish primitive actions but does yield many new examples
of non-birational linear and projectively linear actions.
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• In dimension 3, we exhibit new types of non-birational lin-
ear actions on P3 as well as nonlinearizable actions on smooth
quadrics.

In essence, the Burnside formalism complements birational rigidity
techniques as in [28], [10], [6].

Here is the roadmap of the paper: In Section 2 we recall basic facts
concerning equivariant birational geometry and relevant classical in-
variants used to distinguish actions up to birationality. In Section 3,
we recall the definition of the Burnside group Burnn(G) introduced in
[17]; this group receives birational invariants of generically free actions
of a finite group G on n-dimensional varieties. We tabulate the groups
in small dimensions and for small G, and develop new tools for working
with these groups. In Section 4 we explain how to compute the class

[X ý G] ∈ Burnn(G)

of a generically free G-action on an n-dimensional variety X. In Sec-
tion 5 we apply the formalism to curves. In Section 6 we give examples
of computations of classes of linear actions, using the algorithm in [22].
In Sections 7 and 8 we investigate linear actions on P2 and P3, provid-
ing new examples of non-birational actions, not distinguishable with
previous tools. In Section 9 we study smooth quadrics of dimension
≤ 3.

Acknowledgments: We are very grateful to I. Cheltsov and A. Kresch
for their interest and comments. The first author was partially sup-
ported by NSF grant 2000099.

2. Generalities

We recall basic terminology and notation. We consider generically
free, regular actions of finite groups G on smooth projective algebraic
varieties over an algebraically closed field k of characteristic zero. By
convention, the action is from the right, and it will be denoted by

X ý G.

The induced left G-action on the function field K = k(X) is denoted
by G ýK. We let

XG := {p ∈ X, p · g = p}

be the set of G-fixed points on X.
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We write

X ∼G X
′,

if there exists a G-equivariant birational map X 99K X ′. This means
that there exists a G-equivariant isomorphism of field extensions

k(X)/k
∼−→ k(X ′)/k.

We say that X,X ′ are stably equivariantly birational if

X × Pm ∼G X
′ × Pm,

for some m, with trivial action on the second factor. Of particular
interest is the study of (conjugacy classes of) finite subgroups of the
Cremona group

Crn = BirAut(Pn),
the group of birational automorpisms of projective space, and the study
of equivariant birationalities

X ∼G P(V ).

We say that the G-action on X is:

• linearizable if V is a faithful representation of G, i.e., the action
arises from an injective homomorphism G→ GL(V ∨).

• projectively linearizable if the G-action on P(V ) arises from a
projective representation G → PGLn+1, i.e., a linear represen-
tation G̃→ GL(V ∨) of a central extension

1 → µn+1 → G̃→ G→ 1.

Note that a linearizable action is projectively linearizable, but the con-
verse need not hold. We call the corresponding actions on P(V ) linear,
respectively, projectively linear. Projectively linear actions on Pn with
a fixed point are linear.

Among general approaches to the (stable) linearizability problem are:

• birational rigidity, see, e.g., [26], [9],
• intermediate Jacobians, see [13],
• group cohomology, such asAmitsur invariant (see see [2, Section
6], [29, Theorem 2.14]) or invariance of H1(G,Pic(X)) under
equivariant blowups of smooth projective G-varieties X, see [3].

We list technical tools that are ubiquitous in equivariant birational
geometry:

• If X is rationally connected and G is cyclic then XG ̸= ∅.
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• If G is abelian and π : X̃ 99K X is a G-equivariant birational
map then

XG ̸= ∅ ⇔ X̃G ̸= ∅.

• (RY): Assume that a finite abelian group G acts regularly and
generically freely on a smooth projective variety X of dimension
n. Let p ∈ XG be a G-fixed point and

(a1, . . . , an), aj ∈ G∨

the collection of characters of G occurring in the tangent space
at p. Let

det(p) := a1 ∧ · · · ∧ an ∈ ∧n(G∨)

be the determinant. Let π : X̃ → X be a G-equivariant bira-
tional morphism. Then, by [27], there exists a G-fixed point
q ∈ π−1(p) ⊂ X̃ such that

det(p) = ± det(q).

• (No-name lemma): If G acts generically freely on X and
E → X is a G-vector bundle of rank m then

E ∼G X × Pm,

with trivial action on the second factor.
• (MRC): Let r = r(X) be the dimension of the Maximal Ra-
tionally Connected (MRC) quotient of an algebraic variety X.
This is a well-defined equivariant birational invariant, by the
functoriality of MRC quotients (see, e.g., [16, IV.5.5]).

• (H1): Let X be a smooth projective variety with a generically
free, stably linearizable, action of G. Then, for all H ⊆ G, one
has

H1(H,Pic(X)) = 0.

A G-variety satisfying this property will be called H1-trivial.
This is a stable birational property.

In the next sections, we discuss G-birational invariants introduced
in [17] and [21]. They are based on an analysis of the geometry of
subvarieties of X with nontrivial stabilizers, together with the induced
representation in the normal bundle, and can be viewed as a general-
ization of the (RY) invariant.
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3. Equivariant Burnside groups

Throughout, G is a finite group and H a finite abelian group. When
H ⊆ G is a subgroup, we write ZG(H) (resp. NG(H)) for its centralizer
(resp. normalizer) in G. We write

H∨ := Hom(H, k×)

for the group of characters of H.
There are three versions of symbols groups, corresponding to the

kind of data we attach to loci with nontrivial stabilizers (on a standard
model, see Section 4). We recall the definitions, following [17] and [21].

3.1. Maximal stabilizers. This version addresses (generically free,
regular) actions of abelian groups H on smooth projective X, of dimen-
sion n; one records the weights of H in the tangent space at H-fixed
points. In detail, for n ∈ N, let

Sn(H),

be the abelian group generated by symbols

β = (b1, . . . , bn), b1, . . . , bn ∈ H∨, ⟨b1, . . . , bn⟩ = H∨,

subject to the reordering relation

(O) β = (b1, . . . , bn) ∼ β′ = (b′1, . . . , b
′
n) if there is a permutation

σ ∈ Sn, with b
′
i = bσ(i) for i = 1, . . . , n.

Consider the quotient

Sn(H) → Bn(H)

by the blow-up relation

(B) For β = (b1, . . . , bn), n ≥ 2,

β =

{
(0, b2, . . . , bn), if b1 = b2,

β1 + β2, if b1 ̸= b2,

where

β1 := (b1 − b2, b2, b3, . . . , bn), β2 := (b1, b2 − b1, b3, . . . , bn).
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3.2. Combinatorial Burnside group. This version takes into ac-
count arbitrary stabilizers for actions of general finite groups, but ig-
nores the induced action on function fields of strata with nontrivial
stabilizers. For n ∈ N, let

SCn(G)
be the abelian group generated by symbols

(3.1) (H,Y, β),

where

• H ⊆ G is an abelian subgroup (the stabilizer of the symbol),
• Y is a subgroup of ZG(H)/H, and
• β = (b1, . . . , bn−d), with d ∈ [0, . . . , n], is a sequence of nontriv-
ial characters of H, generating H∨.

Symbols with d = 0 are called point symbols and those with d = n− 1
divisorial symbols.

Symbols (3.1) are subject to reordering and conjugation relations:

(O) (H,Y, β) = (H,Y, β′) if β ∼ β′, as in Section 3.1.

(C) For all g ∈ G,

(H,Y, β) = (H ′, Y ′, β′), H ′ = gHg−1, Y ′ = gY g−1,

and the characters in β′ arise from those in β via conjugation by g.

Consider the quotient

SCn(G) → BCn(G)
by the vanishing and blowup relations:

(V) (H,Y, β) = 0 when b1 + b2 = 0.

(B) (H,Y, β) = Θ1 +Θ2, where:

Θ1 :=

{
0, if b1 = b2,

(H,Y, β1) + (H,Y, β2), if b1 ̸= b2,

with β1, β2 as above, and

Θ2 :=

{
0, if bi ∈ ⟨b1 − b2⟩ for some i,

(H, Y , β̄), otherwise.
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Here,
H := Ker(b1 − b2) ⊆ H,

with
H/H ⊆ Y ⊆ ZG(H)/H,

characterized by Y /(H/H) = Y , and β̄ consists of restrictions of char-
acters of β:

β̄ := (b̄2, b̄3, . . . ).

The images of point symbols, respectively, divisorial symbols, will be
called point classes, respectively, divisorial classes.

3.3. Equivariant Burnside group. The most refined version records
both the action of the stabilizer in the normal bundle and the induced
action on the function fields of strata.

For n ∈ N, let
Symbn(G),

be the abelian group generated by symbols

(3.2) (H, Y ýK, β),

where

• H ⊆ G is an abelian subgroup,
• Y ⊆ ZG(H)/H is a subgroup,
• K is a finitely generated extension of k, of transcendence degree
d ≤ n, with faithful action by Y , and

• β = (b1, . . . , bn−d) is a sequence of nontrivial characters of H,
generating H∨.

As in the case of combinatorial Burnside groups, we call a symbol in
Symbn(G) divisorial if d = (n − 1), i.e., β = (b), for some generator b
of H∨. We call a symbol a point symbol if d = 0. Generally, we call
(n− d) the codimension of the symbol.

Symbols (3.2) are subject to reordering and conjugation relations:

(O) (H,Y ýK, β) = (H,Y ýK, β′) if β ∼ β′.

(C) (H,Y ýK, β) = (H ′, Y ′ ýK ′, β′) if, for some g ∈ G, we have
H ′ = gHg−1, Y ′ = gY g−1, there is an isomorphism K ∼= K ′, trivial on
k, that is compatible with the respective actions, and β′ obtained from
β via conjugation by g.
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We consider the quotient

Symbn(G) → Burnn(G)

by the vanishing and blowup relations:

(V) (H,Y ýK, β) = 0 when b1 + b2 = 0.

(B) (H,Y ýK, β) = Θ1 +Θ2, where:

Θ1 :=

{
0, if b1 = b2,

(H,Y ýK, β1) + (H, Y ýK, β2), if b1 ̸= b2,

Θ2 :=

{
0, if bi ∈ ⟨b1 − b2⟩ for some i,

(H, Y ýK(x), β̄), otherwise.

Here H := Ker(b1 − b2) ⊂ H and β̄ is the image of characters of β in

H
∨
; there is also a recipe to produce a Y -action on K(x), extending

the given action of Y (via the canonical homomorphism Y → Y ) on
K, see the Action construction in [21, Section 2].

3.4. Computations. Let G be abelian. The groups Bn(G) are de-
fined by finitely many generators and relations and are thus effectively
computable. In practice, this is doable for n ≤ 4 and |G| < 300. Such
computations allowed to recognize interesting arithmetic and combi-
natorial structures of Bn(G): these groups are related to cohomology
of congruence subgroups of GLn(Z), they carry Hecke operators, ad-
mit multiplication and comultiplication, see [17], [18], [20]. Tables for
cyclic groups Cm of small order can be found in [17, Section 5].

The groups BCn(G) are also finitely generated, with finitely many
relations, and thus computable. A structure theorem, [33, Theorem
5.2], provides simplifications in computations of BCn(G), by reduction
to modified Bn(H), for abelian subgroups H ⊆ G. For example, for G
abelian, we proved in [33] that

BCn(G) =
⊕
H′⊆G

⊕
H′′⊆H′

Bn(H ′′).

We list B2, BC2 and BC3 for small groups. We start with G := Cm.

m B2(G) BC2(G) BC3(G)

2 0 0 0

3 Z Z 0
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4 Z Z 0

5 Z2 Z2 0

6 Z2 ⊕ Z/2 Z4 ⊕ Z/2 0

7 Z3 ⊕ Z/2 Z3 ⊕ Z/2 Z/2
8 Z3 ⊕ Z/4 Z5 ⊕ Z/4 Z/2
9 Z5 ⊕ Z/3 Z7 ⊕ Z/3 Z
10 Z4 ⊕ (Z/2)2 ⊕ Z/6 Z8 ⊕ (Z/2)2 ⊕ Z/6 (Z/2)2

11 Z6 ⊕ Z/5 Z6 ⊕ Z/5 Z⊕ Z/5
12 Z7 ⊕ Z/8 Z16 ⊕ (Z/2)2 ⊕ Z/8 Z2 ⊕ (Z/2)2

13 Z8 ⊕ Z/7 Z8 ⊕ Z/7 Z2 ⊕ Z/7
14 Z7 ⊕ (Z/2)4 ⊕ Z/12 Z13 ⊕ (Z/2)6 ⊕ Z/12 Z⊕ (Z/2)6

15 Z13 ⊕ Z/8 Z19 ⊕ Z/8 Z5 ⊕ Z/2
16 Z10 ⊕ (Z/2)2 ⊕ Z/16 Z19 ⊕ (Z/2)2 ⊕ (Z/4)2 ⊕ Z/16 Z3 ⊕ (Z/2)7

The next table concerns G := Cn ⊕ Cm.

(n,m) B2(G) BC2(G) BC3(G)

(2, 2) (Z/2)2 (Z/2)2 0

(2, 4) Z2 ⊕ (Z/2)3 Z6 ⊕ (Z/2)7 (Z/2)3

(2, 6) Z3 ⊕ (Z/2)4 ⊕ Z/4 Z20 ⊕ (Z/2)14 ⊕ Z/4 (Z/2)9

(2, 8) Z6 ⊕ (Z/2)6 ⊕ Z/8 Z30 ⊕ (Z/2)18 ⊕ (Z/4)4 ⊕ Z/8 Z⊕ (Z/2)24

(4, 4) Z11 ⊕ Z/2 Z41 ⊕ (Z/2)29 Z5 ⊕ (Z/2)31

(3, 3) Z7 Z15 Z3

We also record results for small nonabelian G.

G BC2(G) BC3(G)

Q8 (Z/2)3 0

D4 (Z/2)3 0

D5 (Z/2)2 0

A5 (Z/2)3 0

S5 (Z/2)6 ⊕ Z/4 0

D6 (Z/2)5 ⊕ Z/4 0

A6 (Z/2)7 ⊕ Z/4⊕ Z Z/2⊕ Z
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S6 (Z/2)31 ⊕ (Z/4)3 ⊕ Z/8 (Z/2)5 ⊕ Z/4
A7 (Z/2)12 ⊕ (Z/4)3 ⊕ Z/8⊕ Z2 (Z/2)3 ⊕ Z

PSL2(F7) (Z/2)3 ⊕ Z Z/2
D5 ×D4 (Z/2)118 ⊕ Z/4⊕ (Z/12)11 ⊕ (Z/24)⊕ Z (Z/2)63 ⊕ Z

In contrast to Bn(G) and BCn(G), the computation of Burnn(G)
is more difficult. One of the reasons is that the symbols depend on
function fields, i.e., algebraic varieties, which havemoduli. For example,
there are 3 types of nonlinearizable involutions in the plane Cremona
group Cr2 (de Jonquières, Geisser, Bertini), fixing curves C of genus
≥ 1, and contributing symbols

s = (C2, 1 ýk(C), (1)) ∈ Burn2(C2).

Since the conjugacy class of an involution in Cr2 is uniquely determined
by k(C), the symbols s parametrize all conjugacy classes of involutions.

In the following sections, we will discuss various approaches to work-
ing with Burnn(G). There is a natural homomorphism

Burnn(G) → BCn(G),(3.3)

defined by forgetting the field information in each symbol (see [20, Sec-
tion 8]). Note that it is not necessarily surjective. However, sometimes,
this homomorphism allows to distinguish actions by comparing their
classes under the homomorphism (3.3), see Section 7, 8 and 9.

3.5. Tools. In small dimensions and for small G, we can arrive at
simplifications via simple manipulations with defining relations. For
reference, we list several such standard operations with symbols, which
are independent of the ambient group and will be frequently used.

We consider symbols

(3.4) s = (H,Y ýK, β), β = (b1, . . . , bn−d), K = k(F ),

with small H and Y .

Reduction to point classes: Relation (B) implies that if d ̸= n− 1 and
b1 = b2 then

(3.5) s = (H, Y ýK(x), (b2, . . . , bn−d)),

with trivial Y -action on x. In particular, every symbol as in (3.4) with
Y = 1 and F = Pd can be reduced to a point symbol.
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Vanishing: Relation (V) implies that s vanishes, provided

(3.6)
∑
i∈I

bi = 0 ∈ H∨, for some I ⊆ [1, . . . , n− d].

Cyclic stabilizers:

• H = C2: If β contains more than one entry, s = 0 ∈ Burnn(G),
by (V). Assume that

F ∼Y F
′ × P1,

with trivial action on the second factor. By (3.5) and (V),

s = (C2, Y ýk(F ′), (1, 1)) = 0.

• H = C3: The symbol s vanishes, if its codimension is ≥ 3, by
(3.6). Together with (B) this implies

(C3, 1 ýK, β) = 0 ∈ Burnn, for n ≥ 3.

For some G, the symbol can be nontrivial, i.e., in Burn2(C3).
On the other hand, if there is a C6 ⊂ G centralizing H, then
it supplies additional relations, leading to additional vanishing.
For example, we have

(C3, C2 ýk(P1), (1, 1)) =(C6, 1 ýk, (1, 4, 1))− (C6, 1 ýk, (1, 3, 1))

− (C6, 1 ýk, (3, 4, 1))

=− (C6, 1 ýk, (1, 3, 1))−(C6, 1 ýk, (5, 4, 1))

− (C6, 1 ýk, (3, 1, 1))

=− 2(C6, 1 ýk, (1, 3, 3)) = 0 ∈ Burn3(G).

Similarly,

(C3, C2 ýk(P1), (2, 2)) =(C6, 1 ýk, (2, 5, 5))− (C6, 1 ýk, (2, 3, 5))

− (C6, 1 ýk, (3, 5, 5))

=− (C6, 1 ýk, (2, 1, 5))− (C6, 1 ýk, (5, 3, 5))

− (C6, 1 ýk, (3, 5, 5)) = 0

=− 2(C6, 1 ýk, (5, 3, 3)) = 0 ∈ Burn3(G).

• H := C4: Consider point symbols for n = 3. There are only
two potentially nontrivial symbols

(3.7) (C4, 1 ýk, (1, 1, 1)), (C4, 1 ýk, (3, 3, 3)),
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Using (3.6), we derive

0 = (C4, 1 ýk, (1, 2, 1)) = (C4, 1 ýk, (3, 2, 1)) + (C4, 1 ýk, (1, 1, 1)),

and thus the second term on the right vanishes. The same
argument applies to the other symbol in (3.7).

• H = C5: All symbols

(C5, 1 ýk(Pd), β) ∈ Burnn(G), n ≥ 2,

reduce to point classes. Let n = 3 and order b1 ≤ b2 ≤ b3, using
(O). Potentially nonvanishing generators are:

(C5, 1 ýk, (i, i, i)), i = 1, . . . , 4, (C5, 1 ýk, (1, 1, 2)),

and turn to relations:

(C5, 1 ýk, (1, 1, 2)) = (C5, 1 ýk, (1, 4, 2)) + (C5, 1 ýk, (1, 1, 1)).

On the other hand, we have

(C5, 1 ýk, (1, 1, 2)) = (C5, 1 ýk(P1), (1, 2)) = (C5, 1 ýk, (1, 2, 2))=0.

The same argument shows the vanishing of all other generators.

To summarize, we have:

Lemma 3.1. Let G be a finite group and n ≥ 3. Every point class in
Burnn(G), with stabilizer H = Cm ⊂ G and m ≤ 6 is trivial.

Proof. It suffices to prove this for n = 3. We already dealt with m =
2, 3, 4, 5. When m = 6, Θ2-terms in the blow-up relations come from:

(C2, C3 ýk(P1), (1, 1)) = 0,

(C3, C2 ýk(P1), (1, 2)) = 0,

(C3, C2 ýk(P1), (±1,±1)).

We prove that the last symbols are also zero in Burn3(G). First of all,

0 = (C3, C2 ýk(P1), (1, 2))

= (C3, C2 ýk(P1), (2, 2)) + (C3, C2 ýk(P1), (1, 1)).

For compactness, for point classes, we will use the notation

(b1, b2, b3) = (C6, 1 ýk(P1), (b1, b2, b3)).

Applying (B), we obtain

0 = (1, 4, 1) = (3, 4, 1) + (1, 3, 1) + (C3, C2 ýk(P1), (1, 1)).

Similarly,
(3, 4, 1) = (3, 4, 3) + (3, 3, 1) + Θ2 = 0,
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since all terms on the right vanish, by (V) and the fact that

b3 ∈ ⟨b1 − b2⟩, b3 = 3, b1 = 1, b2 = 4.

We now have

(3.8) 0 = (3, 4, 1) = (5, 4, 1) + (3, 1, 1).

Thus, all Θ2 terms vanish.
Next, note that once we know that (b1, b2, b3) = 0 then the same

relations, applied to negatives, yield (−b1,−b2,−b3) = 0 as well. Thus
we need to prove the vanishing of the non-boldface symbols in the
following sequence of relations, which we apply in the given sequence;
in bold we have indicated the terms that vanish by (V), by previous
identities, or by sign change on previously obtained vanishing symbols:

(1,2,3) = (1,3,5) + (1, 1, 2)

(1,1,2) = (1,5,2) + (1, 1, 1)

(1,2,3) = (4,2,3) + (1, 2, 2)

(1, 3, 4) = (3,3,4) + (1,3,3)

(1, 1, 3) = (1,4,3) + (1,1,2)

(2, 2, 3) = (2,5,3) + (2,2,1)

(1, 4, 4) = (3,4,4) + (1,3,4)

□

3.6. Incompressibles. For n = 1, there are no relations, with the
exception of the conjugation relation (C), i.e., Burn1(G) is the free
abelian group spanned by symbols

(H, 1 ýk, (b1)),

where H ⊆ G is a cyclic subgroup (up to conjugation).
In dimensions n ≥ 2, we call a divisorial symbol incompressible if it

does not appear in the Θ2-term of any relation (B). We have

(3.9) Burnn(G) = Burntriv
n (G)⊕ Burninc

n (G)⊕ Burncomp
n (G),

where

• Burntriv
n (G) is freely spanned by symbols

(1, G ýK, ()),

where K is a field of transcendence degree n, with a generically
free action of G;
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• Burninc
n (G) is freely spanned by incompressible divisorial sym-

bols, modulo conjugation; and
• the third summand is generated by all other symbols, subject
to relations in Section 3.3 (see [22, Proposition 3.4]).

In some examples, the presence of incompressible symbols already al-
lows to distinguish birational types of actions, greatly simplifying the
arguments (see Section 7). In other examples, one has to perform com-
putations in Burncomp

n (G).
Recall that, for n = 2, we have

• point classes, i.e., K = k and β = (b1, b2),
• divisorial classes:

– classes of rational curves, i.e., K = k(x), β = (b1), and Y
cyclic,

– classes of rational curves, with β = (b1), and Y noncyclic,
– classes of curves of genus ≥ 1, i.e., those where K = k(C),
and C is a curve of genus ≥ 1.

The incompressible divisorial symbols correspond to the last two cases.
The table below shows the structure of Burncomp

2 (G) for G = Cm:

m Burncomp
2 (G)

2 0

3 Z
4 Z2

5 Z2

6 Z6

7 Z3 ⊕ Z/2
8 Z8 ⊕ Z/2
9 Z8 ⊕ Z/3
10 Z11 ⊕ Z/3
11 Z6 ⊕ Z/5
12 Z22 ⊕ Z/4
13 Z8 ⊕ Z/7
14 Z17 ⊕ Z/2⊕ Z/6
15 Z22 ⊕ Z/8
16 Z25 ⊕ (Z/2)2 ⊕ Z/8

The analysis of incompressible divisorial symbols

s̄ = (H̄, Ȳ ýk(D), (b̄1)),
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in dimensions n ≥ 3 is more involved. We have not attempted a full
classification, but can identify several types, e.g.,

• D is not uniruled,
• D is G-solid, i.e., not G-birational to a G-equivariant Mori fiber
space over a positive-dimensional base (see [5] for a detailed
study of toric G-solid varieties in dimension ≤ 3),

• n = 3 and D is a rational surface which is not Ȳ -equivariantly
birational to a Hirzebruch surface, see [11] for a classification of
such actions.

How to tell whether or not a symbol

(3.10) s̄ := (H̄, Ȳ ý̄K, β) ∈ Burnn(G)

is incompressible, in practice? A necessary condition is that

K̄ ̸∼Ȳ K̄ ′(x),

for some function field K̄ ′, with trivial action of Ȳ on x; such symbols
arise via blowup relations from symbols where some characters in β
have multiplicity ≥ 2. The next steps, after verifying this condition,
are:

(1) List all conjugacy classes of abelian subgroups H ⊆ G, together
with their centralizers ZG(H).

(2) For each H enumerate all nontrivial proper subgroups H ′ ⊊ H.
List all subgroups

Y ′ ⊆ ZG(H)/H ′.

(3) If there is no (H ′, Y ′) conjugated to (H̄, Ȳ ) then s̄ is incom-
pressible.

(4) If there is such a pair, one needs to analyze in detail whether
or not the Action construction can produce, birationally, the
given action Ȳ ý̄K.

Example 3.2. Let n = 3 and G = Q8. There are 4 conjugacy classes
of nontrivial abelian subgroups, one C2, with centralizer G, and three
C4, with centralizer itself. We consider the divisorial symbol

s̄ = (C2, C2 × C2 ý̄K, (1)) ∈ Burn3(G),

where K̄ = k(P2) and Ȳ = C2 × C2 acts linearly, in particular, with
fixed points. Such an action is not birational to an action of Ȳ on
P1×P1, with trivial action on the second factor. By Step 2 above, such
Ȳ = C2 × C2 do not arise.
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3.7. MRC quotients. Another look at the key relation (B) shows
that the function field K = k(F ) in the symbol

s = (H,Y ýk(F ), β)

on the left side is the function field of a rationally connected (RC)
variety iff this holds for K(x) in the Θ2-term on the right side. In fact,
in any given relation, all appearing terms have the same dimension of
the MRC quotient r = r(F ). This yields a direct sum decomposition

(3.11) Burnn(G) = Burntriv
n (G)⊕ Burnrc

n (G)⊕
n−1⊕
r=1

Burnnrc,r
n (G),

where

• Burntriv
n (G) is freely spanned by symbols with H = 1,

• Burnrc
n (G) is generated by symbols s with H ̸= 1, and fields

K = k(F ), where F is a rationally connected variety, and
• Burnnrc,r

n (G) is generated by symbols with H ̸= 1 and K =
k(F ) the function field of a variety whose MRC quotient has
dimension r.

Different summands in this decomposition could have nontrivial inter-
section with Burninc

n (G), the incompressible divisorial symbols.

3.8. H1-triviality. Further decompositions of Burnn(G) can be ob-
tained by realizing that relation (B) preserves

H1(Y ′, F ), Y ′ ⊆ Y,

where F is a smooth projective model of the function field in the symbol
s. In particular, we have

Burnrc
n (G) = Burnrc,H1=0

n (G) ⊕ Burnrc,H1̸=0
n (G),

depending on the (non)triviality of the H1-condition (see Section 3).

Lemma 3.3. If s̄ ∈ Burnrc
3 (G) is a compressible divisorial symbol then

s̄ ∈ Burnrc,H1=0
n (G).

Proof. Indeed, it can only arise from a symbol

s = (H,Y ýk(P1), β)

which is H1-trivial. □
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4. Computing the classes

We recall the definition of the class of a generically free G-action on
a smooth projective variety X. By convention, the G-action on X is
on the right, and the induced action on K = k(X) is on the left.

We assume that X is in standard form, i.e., there is an open subset
U ⊂ X where the G-action is free, with complement X \ U a normal
crossings divisor such that for its every component D and all g ∈ G,
we have (D · g) ∩ D is either empty or all of D, see [12, Section 7.2]
for more details. Such a model of the function field K can always be
obtained via equivariant blowups, and every further blowup of such a
model is also in standard form. One of its features is that all stabilizers
are abelian. By definition, the class of such an action

(4.1) [X ý G] :=
∑
H

∑
F

(H,Y ýk(F ), βF ) ∈ Burnn(G)

is a sum over conjugacy classes of stabilizers H of maximal strata F
with these stabilizers, with the induced action of a subgroup Y ⊂
ZG(H)/H on the corresponding function field. In other words, the
symbol records one representative of a G-orbit of a (maximal) stratum
with stabilizer H: changing a component in this G-orbit conjugates
the stabilizer by an element g ∈ G, the action on that component, and
the induced action in the normal bundle to that component; this is
reflected in the conjugation relation (C).

The sum (4.1) contains a distinguished summand,

(1, G ýk(X), ()) ∈ Burntriv
n (G)

reflecting the G-action on the generic point of X. Of course, there
can be actions where there are no other summands in (4.1), e.g., a
translation action on an elliptic curve. In such cases, the Burnside
group formalism provides no information about the G-action. On the
other hand, we will exhibit many examples, where the actions can be
distinguished via images of the corresponding classes under projections
to Burninc

n (G) or Burncomp
n (G).

We note that incompressible divisorial symbols can be read off from
any equivariant birational model, even one which is not in standard
form. It is typically a nontrivial task to find a standard model. Indeed,
a linear representation V of a nonabelian group G, and its equivariant
compactification P(1⊕V ), where 1 is the trivial representation, by defi-
nition have strata with nonabelian stabilizers, e.g., the origin of V ; and
one may have to blow up several times to reach abelian stabilizers. In
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[22] it was shown that a G-equivariant version of De Concini–Procesi
compactifications of subspace arrangements provides a standard model
for the G-action on P(V ); here the relevant subspaces in P(V ) corre-
spond to loci with nontrivial stabilizers. We illustrate this in Section 6.
A similar algorithm for actions on toric varieties was presented in [19].

Next, assume we are given different G-actions, presented on X and
X ′, which are both in standard form. To distinguish these, one ex-
presses the classes as in (4.1), and considers the projection of the dif-
ference

[X ý G]− [X ′ ý G]

to
Burninc

n (G).

Since there are no blowup relations between symbols in that group, it
is easy to see whether or not this difference vanishes; see Corollary 7.7.

If the difference does vanish in this group, we can consider projections
to other direct summands introduced in Sections 3.6, 3.7, and 3.8

Burncomp
n (G), Burnrc

n (G), . . .

As mentioned in Section 3, these groups are harder to compute, in
general. One of the main difficulties is that one has to keep track of
infinitely many generating symbols, and of relations that are implied
by (often nontrivial) stable equivariant birationalities. For example,
by the No-name Lemma, any two faithful G-representations are stably
equivariantly birational, but not necessarily equivariantly birational.
Further examples of such stable equivariant birationalities can be found
in [14]. In some cases, we are able to overcome this intrinsic difficulty
by passing to the combinatorial Burnside group BCn(G), via (3.3). We
have implemented algorithms checking nonvanishing of any given class
in BCn(G), for all n ≥ 2; however, these are practical only for small n.

In the following sections, we will apply this machinery to

• (projectively) linear actions on Pn, with G ⊂ PGLn+1, n ≤ 3,
• smooth quadric hypersurfaces X ⊂ Pn, n ≤ 4.

5. Linear actions in dimension one

We recall the well-known list of finite G ⊂ PGL2:

Cm,Dm,A4,S4,A5,

where Cm is the cyclic group of order m and Dm is the dihedral group
of order 2m. The corresponding actions on P1 are linear if and only if
G is cyclic, or dihedral with m odd.
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The classification of birational actions on P1 is straightforward: two
G-actions on P1 are equivariantly birational if and only if the corre-
sponding representations V are projectively equivalent, i.e., conjugated
in PGL2. In detail:

• G = Cm: the action arises via a representations of the form
P(1 ⊕ ϵ), where ϵ is a primitive character of G; given ϵ, ϵ′, bi-
rationality of the corresponding G-actions holds if and only if
ϵ = ±ϵ′.

• G = Dm: when m is odd, G acts on P1 via a faithful two-
dimensional representations of Dm; when m is even, G acts via
a faithful two-dimensional representations of D2m. Two such
actions are birational if and only if their restrictions to the
subgroup Cm ⊆ Dm induce birational actions of Cm on P1.

• G = A4: the actions arise from faithful two-dimensional repre-
sentations of SL2(F3), all of which are projectively equivalent.
So A4 admits a unique action on P1.

• G = S4: the actions arise from faithful two dimensional repre-
sentations of GL2(F3), all of which are projectively equivalent.
So S4 also admits a unique action on P1.

• G = A5: the actions arise from faithful two-dimensional rep-
resentations of SL2(F5). There are two such representations,
inducing two non-isomorphic actions of A5 on P1 after projec-
tivization. So A5 admits two non-birational actions.

Note that in dimension 1, non-birational actions of cyclic groups can
be distinguished by the Reichstein-Youssin invariant (RY) [27]: when
Cm acts on P1 via a character χ, the action is determined by ±χ.

In applications to nonabelian groups, we can consider determinants
of actions upon restrictions to their abelian subgroups, e.g., for G di-
hedral. For G = A5, the two non-birational actions can also be distin-
guished already via restriction to C5 ⊂ G: in one case the weights at
the fixed points are (1) and (4) and in the other case (2) and (3).

Proposition 5.1. The birational type of the action of a finite group G
on P1 is uniquely determined by

[P1 ý G] ∈ Burn1(G).

6. Computing the classes of linear actions

The computation of classes in the Burnside group of (projectively)
linear actions in dimensions ≥ 2 is more involved. Given a faithful



EQUIVARIANT GEOMETRY OF LINEAR ACTIONS 21

linear representation G→ GL(V ∨) we obtain a faithful projective rep-
resentation G/C → PGL(V ∨), where C ⊂ G is the maximal (cyclic)
subgroup acting via scalar matrices. An algorithm to compute the class

[P(V ) ý G/C] ∈ Burnn(G/C)

of the induced action of G/C on Pn was developed in [22], and im-
plemented in [32]. It is based on an equivariant version of the De
Concini–Procesi approach to wonderful compactifications of subspace
arrangements, which provides a systematic way of turning any given
projectively linear action into a standard form. We note that

• all symbols produced and appearing as summands in

[P(V ) ý G] =
∑
H

∑
F

(H, Y ýk(F ), βF ),

are in

Burnrc
n (G),

see (3.11), and
• all actions Y ýk(F ) are equivariantly birational to products
of projectively linear actions on projective spaces, without per-
mutation of the factors (see Corollary 6.1).

We explain the main ideas below, supplemented with two examples
(our notation follows the one in [22]). First, consider pairs

(6.1) (Γ, ϵ), C ⊆ Γ ⊆ G, ϵ ∈ Hom(Γ, k×),

where Γ is the generic stabilizer group of some one-dimensional sub-
space ℓ ⊂ V and ϵ is the character of Γ given by its action on ℓ. Then
Γ/C stabilizes the point P(ℓ) ∈ P(V ). The set

L̄ = L̄(V ) := {pairs (Γ, ϵ) as above} ∪ {∞}

carries information about the subspace arrangement. In particular, we
associate to every pair (Γ, ϵ) ∈ L̄ the subspace

VΓ,ϵ := {v ∈ V | v · g = ϵ(g)v, for all g ∈ Γ}.

The De Concini–Procesi model P(V )L̄ is defined as the closure of the
image of the natural map

P(V )◦ → P(V )×
∏

(Γ,ϵ)∈L̄
Γ ̸=C

P(V/VΓ,ϵ),
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where the P(V )◦ is the complement in P(V ) of the union of all proper
subspaces of the form P(VΓ,ϵ). The natural projection

P(V )L̄ → P(V )

is an isomorphism on P(V )◦, whose complement in P(V )L̄ is a normal
crossings divisor. It is shown in [22, Proposition 7.2] that the G-action
on P(V )L̄ is in standard form with respect to this divisor. We now
describe the main steps of the algorithm.

Input. A faithful linear representation G→ GL(V ∨).

Step 1. Find C and L̄ = L̄(V ), i.e., all possible pairs (Γ, ϵ) as in (6.1).

Step 2. Find all chains of subspaces, up to conjugation by G,

0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vt ⊊ V

such that

• Vi = VΓi,ϵ for some pair (Γi, ϵ) ∈ L̄ with Γi ̸= C, for every
i = 1, . . . , t and a common character ϵ,

• Γi is the (maximal) stabilizer group of Vi.

Associated with each chain of subspaces is a chain of stabilizer groups,

Λ := Γ1 ⊋ Γ2 ⊋ · · · ⊋ Γt,

and a character ϵ of Γ1.

Step 3. For each conjugacy class of chains of subspaces V1 ⊊ · · · ⊊ Vt
and the corresponding chain of stabilizers Λ, find

• NG(Λ) ⊆ G, the intersection of normalizers of Γi in G which
stabilize ϵ, this is the stabilizer of Λ.

• ∆t
Λ, the maximal subgroup of NG(Λ) acting via scalars on all

Vi+1/Vi.

The input representation induces a faithful representation of NG(Λ) on

V ∨
1 × (V2/V1)

∨ × (V3/V2)
∨ × · · · × (V/Vt)

∨,

where ∆t
Λ acts via scalars on each factor; we record characters ϵi of ∆t

Λ

on Vi+1/Vi, i = 0, . . . , t. By convention, V0 = 0 and Vt+1 = V .

Step 4. For each conjugacy class of chains, compute an intermediate
class

[P(V1)× P(V2/V1)× . . .× P(V/Vt) ý NG(Λ)](O(−1))



EQUIVARIANT GEOMETRY OF LINEAR ACTIONS 23

of the induced action of NG(Λ), with respect to (O(−1)), a sequence
of line bundles

OP(V1)(−1),OP(V1)(1)⊗OP(V2/V1)(−1),OP(V2/V1)(1)⊗OP(V3/V2)(−1), . . . .

This intermediate class takes values in

Burnn,{0,...,t}(NG(Λ),∆
t
Λ),

the equivariant indexed Burnside group with respect to line bundles
(O(−1)), defined in [22, Section 4 and Section 5]. Since the De Concini–
Procesi model satisfies the conditions in [22, Lemma 5.1], we can com-
pute the intermediate class by [22, Definition 5.3].

Step 5. A recursive formula [22, Proposition 8.3 and Theorem 8.4]
allows to compute the class

[P(V ) ý G](OP(V )(−1)) ∈ Burnn,{0}(G,C)

using all intermediate classes of chains found in Step 2. Apply this
recursion to obtain this class, taking values in the equivariant indexed
Burnside group with respect to the line bundles (OP(V )(−1)).

Step 6. Apply the map

η{0} : Burnn,{0}(G,C) → Burnn(G/C),

defined by

(C ⊆ H ′, Z ′ ýK, β, γ) 7→ (H ′/C, Z ′ ýK, β).

By [22, Theorem 8.5], we have

[P(V ) ý G/C] = η{0}

(
[P(V ) ý G](OP(V )(−1))

)
.

Output. The class

[P(V ) ý G/C] ∈ Burnn(G/C)

is presented as a finite sum of symbols in Symbn(G).

As already noted, an important observation is:

Corollary 6.1. Every symbol s appearing as a summand in the class

[P(V ) ý G] ∈ Burnn(G),



24 YURI TSCHINKEL, KAIQI YANG, AND ZHIJIA ZHANG

via the algorithm from [21] is of the shape

s = (H,Y ýk(F ), β),

where

• F is birational to
∏

j P(Wj),

• Y ⊆ ZG(H)/H acts without interchanging the factors, and
• the action on each factor is (birational) to a (projectively) linear
action.

In particular,
[P(V ) ý G] ∈ Burnrc,H1=0

n (G),

(see Section 3.8).

An example computation, for G = S4, acting on P2 = P(V ), where
V is the standard 3-dimensional representation of S4, can be found in
[22, Section 9]. Here, we provide new examples, in dimensions 2 and 3.

Example 6.2. Let G = C3 ×D5 acting on P2 = P(1⊕ Vϵ); here

Vϵ := ϵ⊗ V

is the twist by a nontrivial character of C3 of the standard 2-dimensional
representation of D5, with generators acting via(

ζ5 0

0 ζ−1
5

)
,

(
0 1

1 0

)
.

We tabulate the relevant information for conjugacy classes of chains of
stabilizer groups from Steps 1, 2 and 3.

t Λ NG(Λ) ∆t
Λ ϵi

1 C3 ×D5 C3 ×D5 C3 0

1 C15 C15 trivial −
1 C6 C6 C2 1

1 C6 C6 trivial −
1 C3 C3 ×D5 C3 1

1 C2 C6 C2 0

2 C3 ×D5 ⊃ C2 C6 C6 0, 4

2 C15 ⊃ C3 C15 C15 4, 1

2 C6 ⊃ C3 C6 C6 1, 4

2 C6 ⊃ C3 C6 C6 4, 1

2 C6 ⊃ C2 C6 C6 4, 0

Each chain Λ contributes to [P2 ý G] via its intermediate class, ob-
tained in Step 4. We record these classes:
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• Λ = C3 ×D5:

(C3 ⊆ C3,D5 ýk(P1), (), (0, 2)) + (C3 ⊆ C6, 1 ýk, (3), (0, 2))

+ (C3 ⊆ C6, 1 ýk, (3), (0, 5)) + (C3 ⊆ C15, 1 ýk, (9), (0, 8))

∈ Burn3,{0,1}(C3 ×D5, C3)

• Λ = C15:

(1 ⊆ 1, C15 ýk(P1), (), (0, 0)) + (1 ⊆ C15, 1 ýk, (7), (13, 2))

+ (1 ⊆ C15, 1 ýk, (8), (13, 9)) ∈ Burn3,{0,1}(C15, 1)

• Λ = C6 with ∆t
Λ = 1:

(1 ⊆ 1, C6 ýk(P1), (), (0, 0)) + (1 ⊆ C6, 1 ýk, (1), (2, 3))

+ (1 ⊆ C6, 1 ýk, (5), (2, 4)) ∈ Burn3,{0,1}(C6, 1)

• Λ = C6 with ∆t
Λ = C2:

(C2 ⊆ C2, C3 ýk(P1), (), (1, 1)) + (C2 ⊆ C6, 1 ýk, (4), (5, 3))

+ (C2 ⊆ C6, 1 ýk, (2), (5, 1)) ∈ Burn3,{0,1}(C6, C2)

• Λ = C3:

(C3 ⊆ C3,D5 ýk(P1), (), (2, 1)) + (C3 ⊆ C6, 1 ýk, (3), (2, 4))

+ (C3 ⊆ C6, 1 ýk, (3), (5, 1)) + (C3 ⊆ C15, 1 ýk, (9), (8, 7))

∈ Burn3,{0,1}(C3, C3).

Our algorithm records the action on function fields in each symbol,
e.g., the action of D5 on k(P1) in the last expression, but we omit it
from the notation.

When t = 2, each graded piece is a one-dimensional vector space,
with NG(Λ) acting via scalars. We will obtain classes

(NG(Λ) ⊆ NG(Λ), 1 ýk, (), (ϵ, ϵ1 − ϵ, ϵ2 − ϵ1)).

Then we use the recursion in Step 5 to compute

[P(V ) ý G](OP(V )(−1)) ∈ Burnn,{0}(G,C).
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In this example, G acts generically freely on P2, so that C = 1. After
applying the map η{0} in Step 6 and cancellations by relations, we have

[P(V ) ý G] = (1, G ýk(P2), ()) + 2(C2, C3 ýk(P1), (1))

+ (C3,D5 ýk(P1), (2)) + (C3,D5 ýk(P1), (1))

+ (C6, 1 ýk, (3, 2)) + (C6, 1 ýk, (3, 4))

+ (C6, 1 ýk, (3, 5)) + (C6, 1 ýk, (2, 1)

+ (C6, 1 ýk, (3, 1)) + (C6, 1 ýk, (4, 5))

+ (C15, 1 ýk, (1, 11)) + (C15, 1 ýk, (3, 11))

+ (C15, 1 ýk, (12, 4)).

There is an alternative method to compute the class [P(V ) ý G]
[20, Section 5]: First, consider the action of D5 on P1 via its two-
dimensional representation V . Let L1 be OP1(1) twisted by the non-
trivial character ϵ of C3, and L0 be the trivial line bundle on P1. Then

P(1⊕ Vϵ) ∼G P(L0 ⊕ L1),

equivariantly. Using [20, Proposition 5.2], we obtain

[P(L0 ⊕ L1) ý G] = (1, G ýk(P2), ()) + (C2, C3 ýk(P1), (1))

+ (C3,D5 ýk(P1), (2)) + (C3,D5 ýk(P1), (1))

+ (C6, 1 ýk, (3, 2)) + (C6, 1 ýk, (3, 4))

+ (C6, 1 ýk, (3, 5)) + (C6, 1 ýk, (3, 1))

+ (C15, 1 ýk, (3, 11)) + (C15, 1 ýk, (3, 4)).

Here we specify the subgroups and their representations:

C3 =

〈(
ζ23 0

0 ζ23

)〉
, C6 =

〈(
0 ζ3
ζ3 0

)〉
C15 =

〈(
ζ3ζ5 0

0 ζ3ζ
4
5

)〉
.

Note that

[P(V ) ý G]− [P(L0 ⊕ L1) ý G]

= (C2, C3 ýk(P1), (1)) + (C6, 1 ýk, (2, 1)) + (C6, 1 ýk, (4, 5))

+ (C15, 1 ýk, (1, 11)) + (C15, 1 ýk, (12, 4))− (C15, 1 ýk, (3, 4)).

By conjugation relations (C),

(C15, 1 ýk, (3, 4)) = (C15, 1 ýk, (12, 1))

The blow-up relations (B) yield

(C15, 1 ýk, (12, 1)) = (C15, 1 ýk, (11, 1) + (C15, 1 ýk, (12, 4)),
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(C6, 1 ýk, (2, 3)) = (C6, 1 ýk, (5, 3)) + (C6, 1 ýk, (2, 1)),

(C6, 1 ýk, (3, 5)) =

(C6, 1 ýk, (3, 2)) + (C6, 1 ýk, (4, 5)) + (C2, C3 ýk(P1), (1)).

Summing up the last two equalities, we obtain

(C6, 1 ýk, (2, 1)) + (C6, 1 ýk, (4, 5)) + (C2, C3 ýk(P1), (1)) = 0

and conclude

[P(V ) ý G]− [P(L0 ⊕ L1) ý G] = 0 ∈ Burn2(G),

as expected.

Example 6.3. Consider the action of G = D7 on P3, given by

G =

〈
ζ7 0 0 0

0 ζ−1
7 0 0

0 0 ζ27 0

0 0 0 ζ−2
7

 ,


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


〉

⊂ PGL4.

The stabilizer chains are

t Λ NG(Λ) ∆t
Λ ϵ

1 C2 C2 C2 0

1 C2 C2 C2 1

1 C7 C7 C1 2

1 C7 C7 C1 3

The intermediate classes in the equivariant indexed Burnside groups
are:

• Λ = C2 with NG(Λ) = C2:

(C2 ⊆ C2, 1 ýk(P2), (), (0, 1)) ∈ Burn3,{0,1}(C2, C2)

• Λ = C2 with NG(Λ) = C2:

(C2 ⊆ C2, 1 ýk(P2), (), (1, 1)) ∈ Burn3,{0,1}(C2, C2)

• Λ = C7:

(C1 ⊆ C1, C7 ýk(P2), (), (0, 0)) + (C1 ⊂ C7, 1 ýk, (5, 6), (2, 3))

+ (C1 ⊆ C7, 1 ýk, (1, 2), (2, 1)) + (C1 ⊆ C7, 1 ýk, (1, 6), (2, 2))

∈ Burn3,{0,1}(C7, 1)
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• Λ = C7:

(C1 ⊆ C1, C7 ýk(P2), (), (0, 0)) + (C1 ⊆ C7, 1 ýk, (4, 6), (3, 2))

+ (C1 ⊆ C7, 1 ýk, (2, 3), (3, 6)) + (C1 ⊆ C7, 1 ýk, (1, 5), (3, 1))

∈ Burn3,{0,1}(C7, 1).

These classes are combined to obtain

[P(V ) ý G](OP(V )(−1)) = (C1 ⊆ C1, G ýk(P3), (), (0))

+ (C1 ⊂ C2, 1 ýk(P2), (1), (0)) + (C1 ⊆ C2, 1 ýk(P2), (1), (1))

+ (C1 ⊆ C7, 1 ýk, (3, 5, 6), (2)) + (C1 ⊂ C7, 1 ýk, (1, 1, 2), (2))

+ (C1 ⊆ C7, 1 ýk, (1, 2, 6), (2)) + (C1 ⊆ C7, 1 ýk, (2, 4, 6), (3))

+ (C1 ⊆ C7, 1 ýk, (2, 3, 6), (3)) + (C1 ⊆ C7, 1 ýk, (1, 1, 5), (3))

Applying η{0} and using relation (V), we obtain the nonzero class

[P(V ) ý G] =(1, G ýk(P3), ())

+(C7, 1 ýk, (1, 1, 2)) + (C7, 1 ýk, (2, 4, 6))

+(C7, 1 ýk, (2, 3, 6)) ∈ Burn3(G);

in fact, the point classes in this formula are equal, and nonzero, in
BC3(G) = Z/2. The action is birational to an action on P1 × P2, with
trivial action on the second factor and faithful action on the first factor,
by the No-name Lemma.

7. Automorphisms of P2

In this section, we apply the Burnside group formalism to the prob-
lem of classification of actions of finite subgroups of PGL3 up to con-
jugation in the plane Cremona group Cr2 (see [11]).

For n = 2, the classification of actions up to conjugation in PGL3

takes the form (we follow [11, Section 4.2] and [22, Section 10]):

• intransitive: G = Cm ×G′, with G′ ⊂ GL2,
• transitive but imprimitive: certain extensions of C3 or S3 by
bi-cyclic groups,

• primitive: A5, A6, PSL2(F7), the Hessian group 32 : SL2(F3),
and two of its subgroups.

Primitive actions. These are completely understood via birational
(super)rigidity techniques [28]. E.g., A5 admits one, A6 admits four,
and PSL2(F7) admits two non-birational actions on P2 (see [4, Theorem
B.2]).
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Proposition 7.1. The Burnside group formalism does not distinguish
primitive actions on P2.

The proof proceeds via a computation of all classes involved and com-
parisons of the resulting expressions in the respective Burnside groups.
Here is a representative example:

Example 7.2. The action of G := PSL2(F7) on P2 is super-rigid, and
there are non-isomorphic 3-dimensional representations V and V ′ of G,
giving rise to non-birational G-actions on P2 = P(V ) and P(V ′). The
characters of the corresponding representations differ on elements of
order 7. We compute the classes

[P(V ) ý G] = (1, G ýk(P2), ()) + 2(C2,D2 ýk(P1), (1))

+ (C3, 1 ýk, (1, 1)) + (C4, 1 ýk, (1, 1)) + 2(C4, 1 ýk, (1, 2))

+ (C7, 1 ýk, (6, 5)) + (C7, 1 ýk, (1, 4))

+ (C2
2 , 1 ýk, ((0, 1), (1, 0))) + ((C ′

2)
2, 1 ýk, ((0, 1), (1, 0)))

[P(V ′) ý G] = (1, G ýk(P2), ()) + 2(C2,D2 ýk(P1), (1))

+ (C3, 1 ýk, (1, 1)) + (C4, 1 ýk, (1, 1)) + 2(C4, 1 ýk, (2, 3))

+ (C7, 1 ýk, (6, 3)) + (C7, 1 ýk, (1, 2))

+ (C2
2 , 1 ýk, ((0, 1), (1, 0))) + ((C ′

2)
2, 1 ýk, ((1, 1), (1, 0))).

The representations V and V ′ differ by ζ7 7→ ζ37 . Conjugation relations
imply that

[P(V ) ý G] = [P(V ′) ý G].

We record useful method to produce incompressible classes in dimen-
sion 3 (see Section 3.6).

Proposition 7.3. Let G be a finite group and

s̄ = (H̄, Ȳ ýk(P1)(t), (b̄)) ∈ Burn3(G)

a symbol appearing in a Θ2-relation. Then Ȳ does not admit a primitive
action on P2.

Proof. By classification, we know that an A5-action on P2 is not bira-
tional to an action on P1 × P1 [9, Theorem 6.6.1]; A6 and PSL2(F7)
cannot act on P1 and thus not on the projectivization of a sum of
line bundles over P1. A similar argument applies to subgroups of the
Hessian group (which admit a primitive action on P2). □
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Transitive Imprimitive actions. There are four types of such ac-
tions, two types with G an extension of C3 and two additional types
when G is an extension of S3, see [11, Theorem 4.7].

Proposition 7.4. The Burnside group formalism allows to distinguish
transitive imprimitive actions, indistinguishable by the (RY) invariant.

We do not claim that we can distinguish all such actions. In each
of the four types there is a bi-cyclic group H ⊂ G; restricting to H
and applying the Reichstein-Youssin determinant invariant (RY) to H
gives non-birational actions in some cases. Our examples focus on the
simpler types in [11, Theorem 4.7], as it is more difficult to distinguish
smaller actions.

We consider:

(1) extensions

1 → Cn ⊕ Cn → G→ C3 → 1

with the action on P2 = P2(s, t) given by

(x : y : z) 7→ (ζsnx : y : z), (x : ζtny : z), (z : x : y),(7.1)

where s, t ∈ (Z/n)×, and ζn is a primitive n-th root of unity.
(2) extensions

1 → Cn ⊕ Cm → G→ C3 → 1,

with m = n/d, with d > 1, d|n, s2 − s + 1 = 0 (mod d), and
with the action on P2 = P2(r, s, t) via

(x : y : z) 7→ (ζrmx : y : z), (ζsnx : ζtny : z), (z : x : y).(7.2)

Example 7.5. Let G be a group of type (1), with n = 8. Consider
actions as in (7.1) with and

s = 1, t = 7,

respectively,
s′ = 3, t′ = 5.

The (RY) invariant is inconclusive in this case. Computing the Burn-
side symbols as in Section 6, we obtain

[P2(s, t) ý G] = (1, G ýk(P2), ())

+ (C8, C8 ýk(P1), (3)) + (C8, C8 ýk(P1), (5))

+ (C2
8 , 1 ýk, ((1, 2), (6, 7))) + (C2

8 , 1 ýk, ((7, 6), (7, 1))).
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[P2(s′, t′) ý G] = (1, G ýk(P2), ())

+ (C8, C8 ýk(P1), (1)) + (C8, C8 ýk(P1), (7))

+ (C2
8 , 1 ýk, ((3, 6), (2, 5))) + (C2

8 , 1 ýk, ((5, 2), (5, 3))).

(As before, we omit to specify the action of C8 on k(P1) from our no-
tation.) There are no incompressible symbols in the expressions above,
however we are still able to distinguish the actions in the combinatorial
Burnside group, after applying map (3.3) to the difference

[P2(s, t) ý G]− [P2(s′, t′) ý G],

and performing magma computations in BC2(G).
The same argument applies to n = 5, s = 1, t = 2, s′ = 3, and t′ = 4;

or n = 9, s = 2, t = 3, s′ = 4, and t′ = 6.

Example 7.6. LetG act via type (2) with n = 14 andm = 2. Consider
actions as in (7.2) with

r = t = 1, s = 3,

respectively,
r′ = t′ = 1, s′ = 5.

Again, the (RY) invariant is inconclusive. We have

[P2(r, s, t) ý G] = (1, G ýk(P2), ())

+ (C2, C14 ýk(P1), (1)) + (C2, C14 ýk(P1), (1))

+ (C2 × C14, 1 ýk, ((0, 3), (1, 5)))

+ (C2 × C14, 1 ýk, ((0, 11), (1, 8))),

[P2(r′, s′, t′) ý G] = (1, G ýk(P2), ())

+ (C2, C14 ýk(P1), (1)) + (C2, C14 ýk(P1), (1))

+ (C2 × C14, 1 ýk, ((1, 11), (0, 1)))

+ (C2 × C14, 1 ýk, ((1, 3), (1, 12))).

Applying map (3.3) to the difference and computing in BC2(G) we find
that the actions are non-birational.

Intransitive actions. Existence of G-fixed points makes it more diffi-
cult to classify intransitive actions using birational rigidity techniques.
However, it is well-suited for the Burnside group formalism. Recall
that intransitive actions take the form of

G = Cn ×G′, n ≥ 2,
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where G′ ⊂ GL2 is a lift of a subgroup Ḡ′ ⊂ PGL2. We are again in
the situation of Section 5:

• Ḡ′ = Cm for some m ≥ 2. Then G′ is also a cyclic group, i.e.,
G is a rank 2 abelian group. The (RY) invariant determines
equivariant birationality of such actions [27, Theorem 7.1].

• Ḡ′ = Dm,A4,S4 or A5. By [22, Section 10], we know that G
admits non-birational actions when φ(n) ≥ 3. Here we modify
the proof to cover more cases when n ≥ 2.

Let ϵ be a primitive character of Cm, V a faithful two-dimensional
linear representation of G′, and Vϵ := ϵ⊗ V its twist by ϵ. This yields
generically free action G-action on P2 = P(1 ⊕ Vϵ). To put the action
in standard form, we first need to blow up the point (1 : 0 : 0) as it has
nonabelian generic stabilizer. The action on the exceptional divisor is
given by P(Vϵ). On the standard model, there are two divisors with
generic stabilizer H, where H is the maximal subgroup of G acting
via scalars on Vϵ. For example, when Ḡ′ = A5, we can choose the lift
G′ = SL2(F5) and in this case,

H =

{
Cn when n is even,

C2n when n is odd.

Let χϵ be the character ofH corresponding to the action, which depends
on choice of ϵ. The two divisors contribute

(H, Ḡ′ ýk(P(V )), (χϵ)) + (H, Ḡ′ ýk(P(V )), (−χϵ))(7.3)

to the class [P2 ý G]; these symbols are incompressible, as explained
in Section 3.6. When φ(n) ≥ 3, we can produce non-birational actions
by choosing characters ϵ ̸= ±ϵ′. But one can do better:

Corollary 7.7. For Ḡ′ = Dm, with m ̸= 1, 2, 3, 4, 6, 8, 12, or Ḡ′ = A5,
and all n ≥ 2, the group G = Cn × G′ admits non-birational linear
actions on P2.

Proof. From Section 5, we know that Dm, with m as in the statement,
and A5 admit non-birational actions on P1. This will contribute differ-
ent incompressible symbols to (7.3). □

Now we consider the case Ḡ′ = Dm in more detail. Recall that for
m odd, a generically free action of Dm on P1 is linear; for m even, it
is projectively linear—it arises from a 2-dimensional faithful represen-
tation of D2m. In both cases, the representation is determined by a
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primitive character ψ of Cm, respectively C2m, we denote it by Vψ. We
obtain an action of G = Cn ×Dm on

P2 = P2(ϵ, ψ) := P(1⊕ Vϵ,ψ), Vϵ,ψ := ϵ⊗ Vψ.

Lemma 7.8. We have

P2(ϵ, ψ) ∼G P2(−ϵ, ψ) ∼G P2(ϵ,−ψ) ∼G P2(−ϵ,−ψ).

Proof. Indeed, equivariant birationality from the G-action on P2(ϵ, ψ)
to the other actions is realized by

(x : y : z) 99K (
1

x
:
1

z
:
1

y
), (x : z : y), and (

1

x
:
1

y
:
1

z
),

respectively. □

m is odd: The following sum of incompressible symbols

(Cn,Dm ýk(P(Vψ)), ϵ) + (Cn,Dm ýk(P(Vψ)),−ϵ)(7.4)

contributes to the class [P2(ϵ, ψ) ý G]; we obtain similar expressions
for the G-action on P2(ϵ′, ψ′). We observe:

• when ϵ ̸= ±ϵ′, the symbols in (7.4) have different weights;
• when ψ ̸= ±ψ′, the actions of Dm on P1 is not birational to
each other.

Lemma 7.8 implies that the Burnside group formalism determines equi-
variant birationality in this case.

On the other hand, when m is even, the classification of equivariant
birational types remains open:

Example 7.9. Consider G = C3 ×D8, and put ψ′ := ψ3. Then

[P2(ϵ, ψ) ý G]− [P2(ϵ, ψ′) ý G] = 0 ∈ Burn2(G).

However, we cannot tell whether or not

P2(ϵ, ψ)
?∼G P2(ϵ, ψ′).
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In detail,

[P2(ϵ, ψ) ý G] = (1, G ýk(P2), ())

+ 2(C2, C6 ýk(P1), (1)) + 2(C ′
2, C6 ýk(P1), (1))

+ (C6,D4 ýk(P1), (1)) + (C6,D4 ýk(P1), (5))

+ (C ′′
2 × C6, 1 ýk, ((0, 3), (1, 5))) + (C ′′

2 × C6, 1 ýk, ((1, 2), (1, 1)))

+ (C ′′
2 × C6, 1 ýk, ((1, 4), (0, 3))) + (C ′′′

2 × C6, 1 ýk, ((1, 2), (0, 3)))

+ (C ′′′
2 × C6, 1 ýk, ((1, 5), (1, 4))) + (C ′′′

2 × C6, 1 ýk, ((1, 1), (0, 3)))

+ (C24, 1 ýk, (19, 11)) + (C24, 1 ýk, (5, 6)) + (C24, 1 ýk, (19, 18)),

while

[P2(ϵ, ψ′) ý G]

= (1, G ýk(P2), ()) + . . .

+ (C24, 1 ýk, (6, 17)) + (C24, 1 ýk, (7, 23)) + (C24, 1 ýk, (7, 18)),

with the only difference in the sum of terms with stabilizer C24, and
these expressions are equal in Burn2(G).

8. Automorphisms of P3

In this section, we give new examples of non-birational imprimitive
linear actions on P3. The basic terminology is as follows:

actions


intransitive: invariant point or line

transitive:

imprimitive:

{
2 skew lines

orbit of length 4 (monomial)

primitive: none of the above

Primitive actions. We follow [10]. There are 30 conjugacy classes of
finite subgroups G ⊂ PGL4 yielding primitive actions. They are listed,
with inclusions, in [10, Appendix A]. These actions can be analyzed by
birational (super)rigidity techniques, see [7] or [10]. By [10, Theorem
1.1], the action is birationally rigid iff G ̸= A5 or S5. This means
that applying G-MMP to any G-birational model one is reduced to
P3; but this does not imply that different actions on P3 are equivari-
antly birational. We now list representative computations of Burnside
classes:
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• G := A5: Let V be its irreducible 4-dimensional representation.
Consider the induced action on P3 = P(V ). Then

[P3 ý G] = (1,A5 ýk(P3), ()) + 2(C2, C2 ýk(P2), (1))

+ (C3, 1 ýk(P1), (2, 2))+(C3, 1 ýk(P1), (1, 1))

+ (C5, ýk, (1, 1, 1)) + (C5, C5 ýk, (2, 2, 4))

By Lemma 3.1, the point classes are trivial; furthermore,

(C2, C2 ýk(P2), (1)) = (C2, C2 ýk(P1), (1, 1)) = 0 ∈ Burn3(G),

(C3, 1 ýk(P1), (b, b)) = (C3, 1 ýk, (b, b, b)) = 0 ∈ Burn3(G),

by (B) and the vanishing relation (V).
• G = PSL2(F7): The G-action on P3 is super-rigid [10, Theorem
1.3], but every faithful action gives

[P3 ý G] = (1, G ýP3, ()) ∈ Burn3(G).

• G = A6: There are only two actions; they are rigid but not
super-rigid, and thus equivariantly birational. The correspond-
ing classes are

[P3 ý G] = (1, G ýk(P3), ()) + (C3, C3 ýk(P2), (2)),

+ (C2
3 , 1 ýk, ((2, 2), (0, 1), (2, 1)))

+ (C2
3 , 1 ýk, ((0, 2), (2, 1), (2, 2))).

[P3 ý G] = (1, G ýk(P3), ()) + (C ′
3, C3 ýk(P2), (2)),

+ (C2
3 , 1 ýk, ((0, 2), (1, 1), (1, 0)))

+ (C2
3 , 1 ýk, ((0, 2), (1, 0), (2, 2))),

and the nontrivial contributions to their classes in BC3(G) are
equal, as expected. But they are nontrivial in this group.

• G = S6: There are two actions, with Burnside classes

[P3 ý G] = (C1,S6 ýk(P3), ())

+ (C2,A4 ýk(P2), (1)) + (C ′
2,A4 ýk(P2), (1))

+ (C ′′
2 , C

2
2 ýk(P2), (1)) + (C3,S3 ýk(P2), (1))

+ (C2
3 , 1 ýk, ((1, 1), (1, 2), (2, 0))),
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respectively,

[P3 ý G] = (C1,S6 ýk(P3), ())

+ (C2,A4 ýk(P2), (1)) + (C ′
2,A4 ýk(P2), (1))

+ (C ′′
2 , C

2
2 ýk(P2), (1)) + (C ′

3,S3 ýk(P2), (2))

+ (C2
3 , 1 ýk, ((0, 2), (2, 0), (2, 2)))

These differ in BC3(G) = (Z/2)5 ⊕ Z/4; thus, the actions are
not birational.

• G = A7: There are two actions. The actions are super-rigid
and thus not birational to each other. The respective classes
are:

[P3 ý G] = (1, G ýk(P3), ()) + (C2,S3 ýk(P2), (1))

+ (C3,A4 ýk(P2), (2))

+ (C7, 1 ýk, (2, 4, 4)) + (C7, 1 ýk, (1, 3, 5))

+ (C7, 1 ýk, (2, 3, 3))

+ (C2
3 , 1 ýk, ((0, 1), (1, 1), (2, 0)))

+ (C2
3 , 1 ýk, ((0, 1), (2, 0), (2, 2))),

[P3 ý G] = (1, G ýk(P3), ()) + (C2,S3 ýk(P2), (1))

+ (C3,A4 ýk(P2), (2))

+ (C7, 1 ýk, (2, 4, 4)) + (C7, 1 ýk, (1, 3, 5))

+ (C7, 1 ýk, (2, 3, 3))

+ (C2
3 , 1 ýk, ((0, 1), (1, 0), (2, 1)))

+ (C2
3 , 1 ýk, ((0, 1), (1, 0), (1, 2))).

We have BC3(G) = (Z/2)3 ⊕ Z, the (nontrivial contributions
to) combinatorial Burnside classes of the two actions are equal,
which in this case implies that the classes are equal in Burn3(G).

Transitive imprimitive actions. Recall that these are of two types:

• leaving invariant a union of two skew lines,
• having an orbit of length 4 (monomial subgroups)

The second type was analyzed in [6]; by its main theorem, every im-
primitive monomial subgroup, with the exception of (GAP ID)

G48,3, G96,72, or G324,160,
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is G-solid (i.e., not G-birational to conic bundles or Del Pezzo fibra-
tions). Examples of non-birational actions are given in [6, Example
1.6, 1.7 and 1.8].

Here we present applications of the Burnside group formalism to
actions leaving invariant two skew lines.

Example 8.1. Let G := D5 ×D4 and write ψm for a primitive char-
acters of Cm. As in Section 7, let Vψ be a faithful 2-dimensional repre-
sentation of Dm determined by ψm.

We have generically free linear G-actions on

(8.1) P3 = P(Vψ5 ⊕ Vψ4), respectively, P3 = P(Vψ2
5
⊕ Vψ4).

Our algorithm presents the class of each action in (8.1) as a sum of
more than 60 symbols; we have listed them at [32]. Again, with magma,
we find that the projection of the difference of the classes to BC3(G) is
nonzero and we conclude that the actions are not birational.

This is the smallest such example we could find; the same holds for
G := D7 ×D4 (and ψ5 replaced by ψ7).

Intransitive actions: The discussion is similar to that in Section 7.
In dimension 3, intransitive actions take the form of

G = Cn ×G′, n ≥ 2,

where G′ ⊂ GL3 is a lift of Ḡ′ ⊂ PGL3. It is shown in [22, Theorem
11.2] that when

Ḡ′ = S4, A5, PSL2(F7), A6 and φ(n) ≥ 3,

G admits non-birational actions. Here we use the same argument to
cover more cases again: Let V be a 3-dimensional faithful represen-
tation of G′ and ϵ a primitive character of Cn. Let Vϵ := ϵ ⊗ V and
consider the action P(1 ⊕ Vϵ). We need to blow up the fixed point
(1 : 0 : 0 : 0) to put the action into standard form and on the blow-up
model, there will be two divisors with generic stabilizer H, where H is
the maximal subgroup of G acting via scalars. Their contribution to
the class is

(H, Ḡ′ ýk(P(V )), (χϵ)) + (H, Ḡ′ ýk(P(V )), (−χϵ)).

These symbols are incompressible for our choice of Ḡ′ because PSL2(F7)
and A6 are nonabelian and cannot act generically freely on P1 (see
Proposition 7.3). Actions of S4 and A5 on P1 × P1 with trivial action
on one factor and generically free actions on the other factor are not
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linearizable. Similarly to Corollary 7.7, we know that if Ḡ′ admits non-
birational actions on P2, then G admits non-birational actions on P3.
Keeping the notation above, we arrive at:

Corollary 8.2. For G = Cn × G′, with Ḡ′ = PSL2(F7) or A6, there
exist non-birational intransitive G-actions on P3, for all n ≥ 2.

Proof. As in Section 7, these choices of Ḡ′ give non-birational actions
on P2. □

9. Automorphisms of quadrics

There is an extensive literature on birationality of quadrics over non-
closed fields (see, e.g., [30]); of course, this is only interesting in absence
of k-rational points. One of the central problems there is the following.

Zariski problem for quadrics: If two smooth quadrics of the same
dimension, over a nonclosed field, are stably birational then they are
birational.

This is known in dimensions ≤ 7. On the other hand, in the G-
equivariant context, there are examples of stably equivariantly bira-
tional but not birational quadrics, already in dimension 2. Their equi-
variant geometry has been addressed in, e.g., [15], [29], [14, Section
7]. In particular, the quadric surface Q = P1 × P1 admits actions of
G = C2 × Dn, for odd n, which are not birational to linear actions
but such that the G-action on Q × P2, with trivial G-action on the
second factor, is birational to a linear action [24], [14]. The existence
of such stable birationalities makes the analysis of Burnrc

n (G), n ≥ 3,
challenging, as one has to account for all such possibilities.

We are not aware of a systematic study of G-equivariant geometry
of quadrics in higher dimensions. In particular, it would be inter-
esting to study systematically constructions of G-equivariant (stable)
birationalities to projective spaces which do not rely on existence of
G-fixed points.

Assumptions on fixed points: Projection from fixed points gives
trivially linearizability of the action, thus we will assume that

• XG = ∅.
On the other hand, existence of fixed points is a birational invariant
for actions of abelian groups, and linear actions of abelian groups have
fixed points, thus we will assume that
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• XH ̸= ∅, for all abelian H ⊂ G.

In this section we consider the birational classification of automor-
phisms of quadrics from the perspective of Burnside groups. In partic-
ular, we focus on G-actions satisfying the assumptions above.

Conics: Consider X ⊂ P2, given by

3∑
j=1

x2j = 0,

with an action of a subgroup G of the Weyl group W (D3) = S4. The
group W (D3) has 11 conjugacy classes of subgroups. Only one satisfies
the requirements (concerning fixed points), namely S3 = ⟨σ, τ⟩, with
τ 2 = σ3 = 1, and the natural permutation action on the coordinates;
this action is linearizable. We turn to quadric surfaces.

Abelian actions on P1 × P1: Their birational classification is in [1,
Proposition 6.2.4]. In [12, Section 5.5] we noted that the following
actions of C2

2 on P1 × P1 are not distinguishable with the Burnside
formalism: the product action has fixed points, while the diagonal
action does not, thus the actions are not birational, but the projections
of the classes to the nontrivial part of the Burnside group vanish.

On the other hand, consider the following, nonlinearizable, actions
of C3

2 on P1 × P1: in the first case, via K4 = C2
2 on one factor and C2

on the other factor, and in second case via K4 on both factors, together
with a switch of the factors. In the first case, we record

2(C2,K4 ýk(P1), (1)),

coming from the two fixed points on the second P1, and in the sec-
ond case only one such class. Since this symbol is incompressible (see
[22, Proposition 3.6]), we conclude that the two actions have different
classes in the Burnside group.

Nonabelian actions on P1 × P1: A full list of such actions is given
in [11, Theorem 4.9]. Here we consider the quadric surface Q given by

(9.1)
4∑
j=1

x2j = 0.
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We focus on actions changing signs and permuting the variables. There
are 2 conjugacy classes of such groups G satisfying the assumptions on
fixed points, namely:

S3,D6

where

D6 = C2 ×S3 = ⟨ι, σ, τ⟩, τ 2 = σ3 = 1.

Here ι inverts the sign on x4, S3 = ⟨σ, τ⟩ acts via permutation of the
first three coordinates, and the specialization is to S3 = ⟨σ, ι · τ⟩.

The fixed-point free S3-action is linearizable; it is birational to an
action on P(1⊕ V2), where V2 is the standard 2-dimensional represen-
tation of S3; in particular, there is a fixed point on P2.

On the other hand, by [24, Section 9] (see also [14, Section 6]), the
D6-action on Q is not linearizable but stably linearizable. The proof
of nonlinearizability in [15] was based on classification of birational
transformations (links) between rational surfaces. An alternative proof,
using the Burnside group formalism, is in [12, Section 7.6]; we give a
similar argument in the following example.

Example 9.1. Let G = C2
2 × S3. We analyze whether or not the

symbol

s̄ = (C2, C2 ×S3 ý̄K, (1)) ∈ Burn3(G), K̄ = k(Q),

is incompressible. There is a candidate symbol

s = (C2
2 ,S3 ýK, (e1, e2)),

that could lead to the given s̄ via the blowup relation (B). Here e1, e2
are nontrivial distinct characters of C2

2 .
Let us specify the action of Ȳ = C2 ×S3 on K̄ = k(Q), with Q the

quadric surface in (9.1): C2 switches the sign on x4 and S3 permutes
the first three coordinates.

Since Q is rational, we must have K = k(P1). The Action construc-
tion produces Θ2-terms where the Ȳ -action is birational to an action
on a Hirzebruch surface F , a projectivization of a rank-2 vector bundle
on P1, either with trivial action or a C2-action on the generic fiber.
In the first case, such an action is birational to an action on P1×P1,

with C2 ×S3 = D6 acting on one of the factors, and trivial action on
the second factor. This action has no fixed points upon restriction to
C2×S2 ⊂ C2×S3, which is not the case for the Ȳ action on Q. Thus
the actions are not birational.
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In the second case, we compare the classes in Burn2(Ȳ ), for the
actions on Q and on F . We find one incompressible symbol

(C2,S3 ýk(P1), (1)) ∈ Burn2(C2 ×S3)

in the class [Q ý Ȳ ], and two such symbols, corresponding to the two
sections fixed by C2, in the class [F ý Ȳ ] (see Section 3.6). Thus the
actions are not birational and s̄ is incompressible.

Quadric threefolds: We consider first X ⊂ P4 given by
∑5

j=1 x
2
j = 0,

with a natural action of the Weyl group W (D5). This group has 197
conjugacy classes of subgroups, examined in [23, Section 5] in connec-
tion with the analysis of possible Galois actions (or automorphisms)
on Picard groups of Del Pezzo surfaces of degree 4; the goal there was
to identify potentially rational surfaces over nonclosed fields (see also
[31]). There are 112 (conjugacy classes of) subgroups G ⊂ W (D5)
which give rise to fixed-point free actions.

We focus on the linearizability problem. Note that the (RY) in-
variant (see Section 3) does not provide any information: W (D5) does
not contain abelian subgroups of rank 3 that could give a nontrivial
obstruction.

We obtain 33 W (D5)-conjugacy classes of subgroups satisfying our
assumptions on fixed points; several of these are conjugated in PGL5.
We list the remaining cases:

D5

F5 A5

S5

D4

S4

D′
4 D′′

4 Q8

D8 D4 : C2 SD16 SL(2, 3)

OD16

C4wrC2 GL(2, 3)

D6 D′
6

C2
2 ×S3 C3 : D4 D12

S3 ×D4

∼
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Example 9.2. We consider G = C2
2 × S3 ⊂ W (D5). The action is

realized via involutions c4 and c5 switching signs on x4 and x5, and the
permutation action by S3 on the remaining variables x1, . . . , x3.

This contributes the symbol

s̄ := (H̄, Ȳ ýk(Q), (1)) ∈ Burn3(G),

to the class [X ý G]; here H̄ := ⟨c5⟩, and Ȳ := ⟨c4,S3⟩ ≃ C2 ×S3 is
acting on the quadric surface Q ⊂ P3, given by

4∑
i=1

x2i = 0.(9.2)

We claim that

(1) s̄ is an incompressible divisorial symbol in Burn3(G),
(2) the Ȳ action on Q is not birational to a (projectively) linear

action, or products of such actions.

We have addressed (1) in Example 9.1. The same argument shows
that the Ȳ -action on Q is not (projectively) linearizable. Note also
that in this case, we do not need to pass to a standard model X̃ for
the G-action. Indeed, when the class is computed on X̃, it will be a
sum of various classes, with positive coefficients, and the incompressible
class s̄ will be among them. Since symbols s̄ are not produced by the
algorithm in Section 6 and since s̄ is incompressible, we conclude that
the G-action on X is not (projectively) linearizable.

This G is contained in S3×D4, so that the corresponding action on
X is therefore also not (projectively) linearizable.

Example 9.3. Consider the quadric threefold X given by

6∑
i=1

x2i =
6∑
i=1

xi = 0.

It carries a natural action of S6, by permutation of the coordinates
as well as the induced action of A6. By [8, Theorem 6.2], the A6-
action is super-rigid, in particular, it is not equivariantly birational to
a projectively linear action.

Here we give an alternative argument, based on the Burnside formal-
ism. First we treat G = S6. The involution x5 ↔ x6 fixes a quadric
surface Q with residual S4-action. We have:

• The corresponding symbol

s̄ := (C2,S4 ýk(Q), (1))
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is incompressible. Indeed, symbols appearing in the Θ2-term
actions on the projectivization of a rank-2 vector bundle over P1.
Since S4 does not have normal cyclic subgroups, it has to act
trivially on the fibers, and generically freely on the base P1. In
particular, any K4 ⊂ S4 would act without fixed points. On the
other hand, the K4-action on Q, generated by the transpositions
(1, 2) and (3, 4), switching x1, x2 and x3, x4, respectively, fixes
two points. This implies that s̄ is incompressible.

• There are two projectively linear S6-actions on P3, with Burn-
side classes presented in Section 8. The symbol s̄ does not
appear in these expressions.

We conclude that the S6-action on X is not birational to a projectively
linear action on P3.

Now we give a different argument, for G := A6, and by extension
S6. Here, we base the argument on computations in

BC3(A6) = Z/2⊕ Z.

We analyze the fixed loci for (conjugacy classes of) subgroups H ⊂ G:

stabilizer H ZG(H) orbit representatives of fixed loci of H

A4 1 one point

A′
4 1 one point

S3 1 two points

C2
3 C2

3 one point

C5 C5 two points

C4 C4 two points

C3 C2
3 one conic

C ′
3 C2

3 one line

C2 D4 one conic

Note that all symbols in BC3(A6) with stabilizer not equal toH := C2
3

are trivial. The group H = ⟨(1, 2, 3), (4, 5, 6)⟩ has four fixed points,
contained in the G-orbit of

p = (0 : 0 : 0 : 1 : ζ3 : ζ
2
3 ).

The G-action is not in standard form; however, since H = C2
3 is maxi-

mal, in the poset of groups with nontrivial fixed loci, symbols with this
stabilizer on a standard form can only arise from blowing up these fixed
points. Relation (B) implies that contributions from H-fixed points on
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the blowup equal to those on X. Thus

[X ý G] = (H, 1, ((0, 2), (1, 2), (2, 2))) ∈ BC3(G),

which vanishes, by relation (V). On the other hand, the classes of
projectively linear actions of G do not vanish in BC3(G), see Section 8.
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