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I study problems concerning birationality of algebraic varieties. These
include rationality and stable rationality over nonclosed fields, as well
as equivariant birationality of varieties over algebraically closed field.
More specifically, I mainly study birational or stably-birational invari-
ants.

I will start with a brief description of my work, my future research
plans are in section 4.

1. Introduction

One of the central problems in higher-dimensional algebraic geom-
etry is to determine how close a given variety is to a basic projective
variety, a projective space Pn, i.e., whether or not one can simplify the
defining equations of the variety in question by clever substitutions in
such a way as to eliminate all dependencies. If this is possible, the
variety is called rational. This property depends on the groundfield:
a nonrational variety may become rational after a field extension, as
there is more room for transformations. The rationality problem is set-
tled in dimension 1, but there are still many open problems in higher
dimensions.

Over the years, there emerged several approaches to rationality. For
example, the Minimal Model Program offers a systematic approach
to the classification of all possible birational transformations, which
allowed to settle the rationality problem in dimension 2 and make sub-
stantial progress in dimension 3. In another direction, there has been
an extensive study of obstructions to rationality, with great advances
based on specialization.

The focus of my work is on obstructions of cohomological nature, as
well as on new invariants based on birational types and symbols groups
introduced in [13] and [14].
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2. Potentially stably rational del Pezzo surfaces over
non-closed fields

A geometrically rational surface S over a nonclosed field k is k-
birational to either a del Pezzo surface of degree n ∈ [1, . . . , 9] or a conic
bundle (see [12]). Throughout, we assume that the set of its rational
points S(k) ̸= ∅. This implies k-rationality of S when n ∈ [5, . . . , 9] or
when the number of degenerate fibers of the conic bundle is at most 3.

Let Γk be the absolute Galois group of k, it acts on exceptional curves
and on the geometric Picard group Pic(S̄) of S. The surface S is called
split over k if all exceptional curves are defined over k, and minimal if
no blow-downs are possible over k, i.e., there are no Γk-orbits consisting
of pairwise disjoint exceptional curves. A minimal del Pezzo surface
of degree ≤ 4 over k is not rational (see, e.g., [24, Theorem 3.3.1]). A
surface S is called stably rational over k if S × Pm is birational to a
projective space, over k, for some m ∈ N. A necessary condition for
stable rationality of S over k is

Condition (H1)

H1(Γk′ ,Pic(S̄)) = 0, for all finite extensions k′/k.

As a special case of a general conjecture of Colliot-Thélène and Sansuc
one expects that this is also sufficient:

Conjecture 1. If S satisfies condition (H1) then S is stably rational
over k.

Only one example of a minimal, and thus nonrational, but stably ratio-
nal del Pezzo surface of degree ≤ 4 is known at present [7, 6, 2]; in this
case, the Galois group acts via the symmetric group S3, the smallest
nonabelian group. Finding another example is a major open problem.
There are however examples of minimal del Pezzo surfaces of degrees
1 ≤ n ≤ 4 and of conic bundles with at least 4 degenerate fibers, failing
(H1) and thus not stably rational over k.
For n = 3, 2, and 1, the Galois group Γk of k acts on the primitive

Picard group of S (the orthogonal complement of the canonical class in
Pic(S)) through the Weyl group W (E9−n); for n = 4 and conic bundles
with n + 1 degenerate fibers through W (Dn+1). These actions have
been extensively studied, in connection with arithmetic applications



RESEARCH STATEMENT 3

and rationality questions, e.g., the Hasse Principle and Weak Approx-
imation, when k is a number field (see e.g., [23], [19], [29], [32], [21],
[1]).

For general k, it is of interest to identify Galois actions potentially
giving rise to minimal, stably rational surfaces, i.e., those satisfying
(H1). This has been done in [19] for del Pezzo surfaces of degree 4.
Our main result is a classification of the relevant actions in degrees 3,
2, and 1.

Proposition 2. There are no minimal cubic surfaces satisfying Con-
dition (H1). In particular, a k-minimal cubic surface is not stably
rational over k.

Degree 2. In the following propositions we list the structure of Galois
groups of splitting fields. For more details about the structure or orbits
on the set of exceptional curves, and the stabilizers for each orbit, see
[30].

Proposition 3. Assume that S is a minimal degree 2 del Pezzo surface
over k satisfying Condition (H1). Then either S admits a conic bundle
structure over k or Γk acts on the primitive Picard group of S via one
of the following subgroups W (E7), modulo conjugation:

dP2(1) D7, the dihedral group of order 14,
dP2(2) F7, the Frobenius group of order 42,
dP2(3) D15, the dihedral group of order 30,
dP2(4) C3 ⋊ F5.

The classification of conic bundle types is also explicit; there are
14 types, see [30]. For example, the largest appearing subgroup is
isomorphic to S5.

Degree 1.

Proposition 4. [30] If S is a minimal degree 1 del Pezzo surface sat-
isfying Condition (H1) then S is a conic bundle over k, and there are
10 such types.

For more information about the orbits on the set of exceptional
curves, the stabilizers for each orbit, and the Magma code, see

https://cims.nyu.edu/~tschinke/papers/yuri/18h1dp/magma/.

https://cims.nyu.edu/~tschinke/papers/yuri/18h1dp/magma/
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3. Equivariant birational geometry and Burnside groups

Let G be a finite group, acting regularly and generically freely on a
smooth projective variety over an algebraically closed field k, of char-
acteristic zero. The study of such actions, up to G-equivariant bira-
tionality, is a classical and active area in higher-dimensional algebraic
geometry (see, e.g., [28], [5], [25]). A new type of birational invariants
of G-actions was introduced in [14]. These take values in the Burnside
group

Burnn(G),

defined by explicit generators and relations [14, Section 4]. The in-
variant is computed on an appropriate birational model X (standard
form), where

• all stabilizers are abelian,
• a translate of an irreducible component of a locus with nontriv-
ial stabilizer is either equal to it or is disjoint from it.

The invariant takes into account information about

• subvarieties F ⊂ X with nontrivial (abelian) stabilizers H,
• the induced action on F of a subgroup Y ⊆ ZG(H)/H of (the
quotient of) the centralizer of H, and

• the representation of the abelian group H in the normal bundle
to F , i.e., an unordered sequence of characters of H.

Formally, the class

[X ý G] ∈ Burnn(G)

of a regular G-action on a smooth projective variety X in standard
form is written as

[X ý G] :=
∑
H⊆G

∑
F

(H,Y ýK(F ), β),

where H runs over (conjugacy classes of) abelian subgroups of G, F is
a stratum whose components have generic stabilizers (conjugated to)
H, Y records the action on F , and β is the collection of weights of
H in the normal bundle of the stratum (see [14, Definition 4.4] or [10,
Section 7]). The symbols

(3.1) (H, Y ýK(F ), β)

are generators of Burnn(G), and the defining relations insure that

[X ý G]− [X̃ ý G] = 0 ∈ Burnn(G),
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for every equivariant blowup X̃ → X. Basic geometric operations such
as restriction to subgroups G′ ⊆ G, products of varieties, fibrations,
etc. have natural realizations on the level of Burnside groups, see [17].

In particular, one is interested in the birational classification of reg-
ular G-actions on projective spaces Pn, which arise as:

• the natural compactification a linear action of G on An,
• the action induced by a linear action of G on An+1,
• a projective linear representation of G.

There is an explicit combinatorial algorithm [16] to compute the class

[Pn ý G] ∈ Burnn(G)

for each case above by using the formalism of De Concini-Procesi com-
pactifications of subspace arrangements, adopted to the equivariant
setting.

A purely combinatorial version BCn(G) of constructions of group
Burnn(G) was introduced in [17]. It keeps track of the group-theoretic
information extracted as above, while forgetting the field-theoretic in-
formation, i.e., the birational type of the action on irreducible compo-
nents of loci with nontrivial stabilizers.

Formally, combinatorial birational invariants of G-actions on alge-
braic varieties of dimension n take values in the combinatorial Burnside
group

BCn(G),

defined via generators and relations [17, Definition 8.1]. The class

[X ý G] :=
∑
H

∑
F

(H,Y, β) ∈ BCn(G)

of a G-action is computed as above. Here, the symbol (H, Y, β) is a
generator of BCn(G) and the defining relations reflect the invariance of
the class under equivariant blowups.

When G is abelian, there is a surjective homomorphism

BCn(G) → Bn(G),

a group introduced in [13, Section 1], which in turn has remarkable
arithmetic properties [13], [15]. For example,

Bn(G)⊗Q = H0(Γ(n,G),Fn),

where Γ(n,G) ⊂ GLn(Z) is a certain congruence subgroup and Fn is the
Q-vector space generated by characteristic functions of convex rational
polyhedral cones in Rn, modulo functions of support less than n [13,
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Section 9]. In particular, the groups Bn(G) carry Hecke operators. For
n = 2, there is a relation between B2(G) and Manin symbols.

Our main result, [31, Theorem 5.2], is the construction of an isomor-
phism

(3.2) BCn(G) ≃
⊕
[H,Y ]

Bn([H,Y ]),

where the sum is over G-conjugacy classes [H, Y ] of pairs (H, Y ), with
H ⊆ G an abelian subgroup, H ⊆ Y ⊆ ZG(H), and

Bn([H, Y ]) ≃ Bn(H)/(C(H,Y ))

is the quotient by a conjugation relation which depends on the repre-
sentative (H,Y ) of the conjugacy class of the pair.

(C(H,Y )) : β = βg, for all g ∈ NG(H) ∩NG(Y ).

For G abelian, we have

Bn([H, Y ]) = Bn(H), and BCn(G) =
⊕
H′⊆G

⊕
H′′⊆H′

Bn(H
′′);

in particular, the groups BCn(G) also carry Hecke operators, as defined
in [13, Section 6] and [15, Section 3].

The combinatorial decomposition is not available for the geometric
Burnn(G), for n ≥ 3. Clearly, the passage to the combinatorial BCn(G)
leads to a loss of information. On the other hand, these groups are
effectively computable, and I have implemented these computations in
Magma, for more information and Magma code, see

https://kaiqi-yang1994.github.io/projects/CompBnG.

Here are some representative examples:

Example 5. Recall the groups admitting primitive actions on P2:
A5,ASL2(F3)(the Hessian group),PSL2(F7),A6. We have:

• G = A5,

BC2(G) = (Z/2)3, BCn(G) = 0, n ≥ 3.

• G = ASL2(F3),

BC2(G) = (Z/2)7 × Z13, BC3(G) = Z/2× Z, BCn(G) = 0, n ≥ 4.

• G = PSL2(F7),

BC2(G) = (Z/2)3 × Z, BC3(G) = Z/2, BCn(G) = 0, n ≥ 4.

https://kaiqi-yang1994.github.io/projects/CompBnG
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• G = A6,

BC2(G) = (Z/2)7 × Z/4× Z, BC3(G) = Z/2× Z, BCn(G) = 0, n ≥ 4.

The equivariant version of De Concini-Procesi formalism [16] on pro-
jective space are used to compute classes of linear G-actions,

[Pn ý G] ∈ Burnn(G).

I have implemented the algorithm in Magma; the code is available at

https://kaiqi-yang1994.github.io/projects/DCPonProj.

Based on this, I was able to discover interesting examples of nonbira-
tional actions on P2 and P3, distinguished by the Burnside invariants.

Example 6. Let G be the extension of C3 by C2
m, m ≥ 3. Consider

its action on P2 given by generators

g1 := (ζs0mx0 : x1 : x2), g2 := (x0 : ζ
s1
mx1 : x2), (x2 : x0 : x1),

where ζm is a m-th root of unity and s0, s1 are positive integers coprime
to m.

When m = 5, choosing s0 = 1, s1 = 2 and s′0 = 3, s′1 = 4, we obtain
different linear G-representations V , V ′, with induced faithful actions
on P2 = P(V ),P(V ′). No previous invariants allow to distinguish these
actions, up to birationality. On the other hand, from [16, Theorem 8.4,
8.5], we have

[P(V ) ý G] =(1, G ýk(P2), ())

+(C5,C5 ýk(t), (2)) + (C5, C5 ýk(t), (3))(1)

+(C2
5 ,1 ýk, ((1, 0), (0, 3))) + (C2

5 , 1 ýk, ((4, 0), (0, 2)))

[P(V ′) ý G] =(1, G ýk(P2), ())

+(C5,C5 ýk(t), (2)) + (C5, C5 ýk(t), (3))(2)

+(C2
5 ,1 ýk, ((3, 0), (0, 1))) + (C2

5 , 1 ýk, ((2, 0), (0, 4)))

where the group C2
5 is generated by actions g1, g2 and the stabilizer

group C5 within symbols in (1), (2) is generated by gs11 gs02 , fixing a
projective line.

https://kaiqi-yang1994.github.io/projects/DCPonProj
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Considering the image of the difference of these classes under the
natural homomorphism

Burn2(G) → BC2(G) = (Z/2)2 × (Z/30)2 × Z19,

we find that it equals

T 2
2 + 13T 2

30 + e3 − e7 + e8 + 2e11 − e12 + e16 ̸= 0 ∈ BC2(G),

where T 1,2
2 , T 1,2

30 and ei, i = 1, . . . , 19 are generators for (Z/2)2, (Z/30)2,
and the torsion-free part, respectively. Thus

[P(V ) ý G] ̸= [P(V ′) ý G] ∈ Burn2(G),

and we conclude that the G-actions are not birational.

4. Future plans

4.1. As mentioned in section 2, only one class of examples of minimal,
and thus nonrational, but stably rational del Pezzo surfaces of degree
≤ 4 is known [7, 6, 2]. The proof of stable rationality relies on the
knowledge of explicit equations, in particular, equations for torsors over
these surfaces. In this case, the Galois group acts via the symmetric
group S3, which leads to an especially simple form of the relevant
torsor.

In [30], we found all Galois actions on a minimal del Pezzo surface of
degree 1 and 2, satisfying condition (H1). Still missing is the construc-
tion of equations realizing these actions. This is similar to the Inverse
Galois problem, considered in [9]. Specifically, can we find minimal del
Pezzo surface of degree 1 or 2, having the Galois group of splitting
fields as described in proposition 3 and proposition 4? Given this, the
next step is the construction of torsors. I plan to study these torsors
over nonclosed fields as well as in presence of group actions.

4.2. There are 3 new groups

Bn(G), BCn(G) and Burnn(G)

receiving equivariant birational invariants of some finite G acting on
an n-dimensional algebraic variety X. These carry a rich algebraic
structure, and I plan to continue to study it. One of the key next
problems is:

• The identification of the incompressible divisorial symbols in
dimension 3, see [17]. This will draw on the classification of
G-actions on surfaces (as in [3], [8]), as well as a detailed study
of possible H and Y ⊆ ZG(H)/H appearing in (3.1).
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4.3. A regular G-action on a smooth projective variety X yields a
collection of locally closed subvarieties with fixed nontrivial stabilizer
H ⊆ G. The calculation of the class

[X ý G].(3)

requires a standard model. The algorithm in [16] gives such a model,
when X = P(V ), a projectivization of a G-representation. I plan to

• Generalize the De Concini-Procesi subspace arrangement algo-
rithm to general G-varieties, following the approach in [20] and
implement it in Magma.

• Compute the classes (3) in representative examples.

4.4. Very little is known about the relation between Burnside-type
invariants and known birational invariants of G-actions, such as:

(1) The existence of fixed points upon restriction to abelian sub-
groups [27],

(2) The determinant of weights of abelian subgroups in tangent
space at fixed points[26],

(3) Amitsur subgroup [4],
(4) The group cohomology of G acting on Picard group Pic(X) [22],
(5) The Brauer group of the quotient stack Br([X/G]) [18].

I propose to

• Investigate to which extent the class [X ýG] captures the
other birational invariants.

• Compute the unramified Brauer group of the quotient V/G in
terms of Burnside symbols; here V is a linear representation of
G.

4.5. New examples of nonbirational but stably birational actions on
rational surfaces appeared in [11]. These were based on the analysis
of torsors and of the group action on the Picard groups. Very little
is known in dimension 3. I hope to extract from the systematic com-
putations of Burnside invariants suitable candidates and to deploy the
torsor formalism to find many new instances of nonlinear but stably
linear actions.
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