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Introduction

2019: Kontsevich, Pestun and Tschinkel define new invariants of
actions of finite abelian groups G on function fields of algebraic
varieties.

These take values in abelian groups

Bn(G ),

defined via generators and relations, and record characters of the
G -action in tangent spaces to G -fixed points.

2020: Kresch and Tschinkel introduce equivariant Burnside groups

Burnn(G ),

abelian groups receiving invariants of actions of arbitrary finite groups
G , generalizing Bn(G ). These record geometric information about
subvarieties with nontrivial stabilizers, as well as characters of the
action of stabilizers.
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Introduction

2021: Kresch and Tschinkel introduce a combinatorial version,

BCn(G ),

forgetting the geometry of strata with nontrivial stabilizers.
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Bn(H), with H abelian

Generated by symbols

β = (b1, . . . , bn), bi ∈ H∨, ⟨b1, . . . , bn⟩ = H∨,

with relations:

(O) β = βσ = (bσ(1), . . . , bσ(n));

(B) for b1 ̸= b2: β = β1 + β2, where

β1 = (b1 − b2, b2, . . . , bn), β2 = (b1, b2 − b1, . . . , bn),

for b1 = b2: β = (b2, b2, . . . , bn) = (0, b2, . . . , bn)
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BCn(G ), with G general

Generated by symbols
(H,Y , β),

where

H ⊆ G is an abelian group,

H ⊆ Y ⊆ ZG (H), and

β = (b1, . . . , br ), with 1 ≤ r ≤ n,

subject to relations . . .
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Relation (B2)

for b1 = b2: (H,Y , (b1, . . . , br )) = (H,Y , (b2, . . . , br ));
for b1 ̸= b2:

(H,Y , β) =
(H,Y , β1) + (H,Y , β2) if bi ∈ ⟨b1 − b2⟩, for some i ,

(H,Y , β1) + (H,Y , β2)︸ ︷︷ ︸
Θ1

+(H̄,Y , β̄)︸ ︷︷ ︸
Θ2

otherwise.

β1 := (b1 − b2, b2, b3, . . . , br ), β2 := (b1, b2 − b1, b3, . . . , br ),

H̄ := ker(⟨b1 − b2⟩) ⊆ H, β̄ := β|H̄ .
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Main Result

Structure of BCn(G ), in terms of Bn(H), for abelian subgroups H ⊆ G .

BCn(G ) ≃
⊕
[H,Y ]

Bn([H,Y ]),

where

the sum is over G -conjugacy classes [H,Y ] of pairs (H,Y ), with
H ⊆ G an abelian subgroup and H ⊆ Y ⊆ ZG (H).

Bn([H,Y ]) ≃ Bn(H)/(C(H,Y )),

and C(H,Y ) is a certain conjugation relation.
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Comparison with Bn(H) and Bn([H ,Y ])

When G is abelian, then

Bn([H,Y ]) ≃ Bn(H),

BCn(G ) =
⊕
H′⊆G

⊕
H′′⊆H′

Bn(H
′′).

In general,

Bn([H,Y ]) ≃ Bn(H)/(C(H,Y )),

where (C(H,Y )): for all β and g ∈ NG (H) ∩ NG (Y ) we have

β = βg .
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Definition of BC ′
n(G )

In the proof, we introduce another group

BC′
n(G )

generated by
(H,Y , β)′,

with a modified relation (B2′):

for b1 = b2:

(H,Y , (b1, b2, . . . , br ))
′ = (H,Y , (b2, . . . , br ))

′;

for b1 ̸= b2:
(H,Y , β)′ = (H,Y , β1)

′ + (H,Y , β2)
′.

Kaiqi Yang (New York University) Combinatorial Burnside groups October 13, 2022 10 / 13



Isomorphism

Define Z-linear maps on the respective groups:

Ψ : (H,Y , β) 7→
∑
H′⊆H

(H ′,Y , β′)′,

Φ : (H,Y , β)′ 7→
∑
H′⊆H

µ(H ′,H)(H ′,Y , β′),

where
β′ = β|H′ ,

and µ is the Moebius function on the lattice of subgroups of H.

BCn(G ) ≃ BC′
n(G ).
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Computations

Compute BCn(G ) for many G and n ≤ 5.

G = Dp, with p ≥ 5 is a prime.

BC2(G ) = B2([Cp,Cp])
?
= Z

(p−5)(p−7)
24 × (Z/2)

p−3
2 × Z/p2−1

12 .

In fact,
B−
2 (Cp)⊗Q ≃ B2([Cp,Cp])⊗Q,

with rank g(X1(p)).
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Computations of BC∗(G )
Nonabelian subgroups of the plane Cremona group.

G with primitive actions on P2:

A5,ASL2(F3),PSL2(F7),A6.

G = A5,

BC2(G ) = (Z/2)3 and BCn(G ) = 0, n ≥ 3.

G = C2
3 : SL2(F3) = ASL(2, 3),

BC2(G ) = (Z/2)7 × Z13, BC3(G ) = Z/2× Z, BCn(G ) = 0, n ≥ 4.

G = PSL(2, 7),

BC2(G ) = (Z/2)3 × Z, BC3(G ) = Z/2, BCn(G ) = 0, n ≥ 4.

G = A6,

BC2(G ) = (Z/2)7×Z/4×Z, BC3(G ) = Z/2×Z, BCn(G ) = 0, n ≥ 4.
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