Dimension1 Cyclic
The group $G=C_n$ has representation given by
\[\begin{align*} G=\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_n^s \end{pmatrix} \rangle, \end{align*}\]where $\zeta_n$ is a nth root of unity, $s$ is coprime to $n$.
Here we take $n=3,s=1$ as an example, the Magma code is as follows:
n:=3; s:=1; FScale:=CyclotomicField(n:Sparse:=true); F:=FScale; Zn:=RootOfUnity(n); G:=MatrixGroup<2,F| [1,0, 0,Zn^s]>;
For general $n$ and $s$ coprime to $n$, the Burnside symbol is \(\begin{align*} [\mathbb{P}^1 \circlearrowleft G]=&(1,G \circlearrowright k(x),())\\ &+(C_n,1 \circlearrowright k,(s))+(C_n,1 \circlearrowright k,(n-s)) \end{align*}\)