Example
We give an example of $G=A_6$ acting on $\mathbb{P}^2$.
- Copy all lines in magma code.
- Input the following code:
FScale:=CreateBaseFld(SmallGroup(1080,260)); F:=FScale; sqMin1:=F.1; Z3:=F.2; Z5:=F.3; s:=Z5^2+Z5^3; t:=Z5+Z5^4; sq5:=2*t+1; sq15:=4*sqMin1*Z3*Z5^3 + 4*sqMin1*Z3*Z5^2 + 2*sqMin1*Z3 + 2*sqMin1*Z5^3 + 2*sqMin1*Z5^2 + sqMin1; L1:=(-1+sqMin1*sq15)/4; L2:=(-1-sqMin1*sq15)/4; G:=MatrixGroup<3,F| [1,0,0, 0,Z5^4,0, 0,0,Z5], [-1,0,0, 0,0,-1, 0,-1,0], [1/sq5,1/sq5,1/sq5, 2/sq5,s/sq5,t/sq5, 2/sq5,t/sq5,s/sq5], [1/sq5,L1/sq5,L1/sq5, 2*L2/sq5,s/sq5,t/sq5, 2*L2/sq5,t/sq5,s/sq5]>;
- The group $G=A_6$ has representation as follows:
- Use function ComputeBurnsideSymbol(G,F,FScale).
BurnsideSymbols,PG2GHom,G2PGHom,PermG,H,LH,GrpQuo,AllGrp,ChainNode,ChainClass,
ScalarGrp,AllSymbolNGLambda:=ComputeBurnsideSymbol(G,F,FScale);
- The result is as follows,